Mode-assisted joint training of deep Boltzmann machines
Abstract The deep extension of the restricted Boltzmann machine (RBM), known as the deep Boltzmann machine (DBM), is an expressive family of machine learning models which can serve as compact representations of complex probability distributions. However, jointly training DBMs in the unsupervised set...
Guardado en:
Autores principales: | Haik Manukian, Massimiliano Di Ventra |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/95741509c9624ceab2c63fcbc316be4c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Adaptive hyperparameter updating for training restricted Boltzmann machines on quantum annealers
por: Guanglei Xu, et al.
Publicado: (2021) -
Modeling a population of retinal ganglion cells with restricted Boltzmann machines
por: Riccardo Volpi, et al.
Publicado: (2020) -
A Novel Restricted Boltzmann Machine Training Algorithm With Dynamic Tempering Chains
por: Xinyu Li, et al.
Publicado: (2021) -
Inverse problems for structured datasets using parallel TAP equations and restricted Boltzmann machines
por: Aurelien Decelle, et al.
Publicado: (2021) -
Vision based supervised restricted Boltzmann machine helps to actuate novel shape memory alloy accurately
por: Ritaban Dutta, et al.
Publicado: (2021)