Molecular dynamics and in silico mutagenesis on the reversible inhibitor-bound SARS-CoV-2 main protease complexes reveal the role of lateral pocket in enhancing the ligand affinity
Abstract The 2019 novel coronavirus pandemic caused by SARS-CoV-2 remains a serious health threat to humans and there is an urgent need to develop therapeutics against this deadly virus. Recent scientific evidences have suggested that the main protease (Mpro) enzyme in SARS-CoV-2 can be an ideal dru...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/95788b7704554fc2891bdc8195c71917 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:95788b7704554fc2891bdc8195c71917 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:95788b7704554fc2891bdc8195c719172021-12-02T14:25:32ZMolecular dynamics and in silico mutagenesis on the reversible inhibitor-bound SARS-CoV-2 main protease complexes reveal the role of lateral pocket in enhancing the ligand affinity10.1038/s41598-021-86471-02045-2322https://doaj.org/article/95788b7704554fc2891bdc8195c719172021-04-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-86471-0https://doaj.org/toc/2045-2322Abstract The 2019 novel coronavirus pandemic caused by SARS-CoV-2 remains a serious health threat to humans and there is an urgent need to develop therapeutics against this deadly virus. Recent scientific evidences have suggested that the main protease (Mpro) enzyme in SARS-CoV-2 can be an ideal drug target due to its crucial role in the viral replication and transcription processes. Therefore, there are ongoing research efforts to identify drug candidates against SARS-CoV-2 Mpro that resulted in hundreds of X-ray crystal structures of ligand-bound Mpro complexes in the Protein Data Bank (PDB) describing the interactions of different fragment chemotypes within different sites of the Mpro. In this work, we performed rigorous molecular dynamics (MD) simulation of 62 reversible ligand–Mpro complexes in the PDB to gain mechanistic insights about their interactions at the atomic level. Using a total of over 3 µs long MD trajectories, we characterized different pockets in the apo Mpro structure, and analyzed the dynamic interactions and binding affinity of ligands within those pockets. Our results identified the key residues that stabilize the ligands in the catalytic sites and other pockets of Mpro. Our analyses unraveled the role of a lateral pocket in the catalytic site in Mpro that is critical for enhancing the ligand binding to the enzyme. We also highlighted the important contribution from HIS163 in the lateral pocket towards ligand binding and affinity against Mpro through computational mutation analyses. Further, we revealed the effects of explicit water molecules and Mpro dimerization in the ligand association with the target. Thus, comprehensive molecular-level insights gained from this work can be useful to identify or design potent small molecule inhibitors against SARS-CoV-2 Mpro.Ying Li WengShiv Rakesh NaikNadia DingelstadMiguel R. LugoSubha KalyaanamoorthyAravindhan GanesanNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-22 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Ying Li Weng Shiv Rakesh Naik Nadia Dingelstad Miguel R. Lugo Subha Kalyaanamoorthy Aravindhan Ganesan Molecular dynamics and in silico mutagenesis on the reversible inhibitor-bound SARS-CoV-2 main protease complexes reveal the role of lateral pocket in enhancing the ligand affinity |
description |
Abstract The 2019 novel coronavirus pandemic caused by SARS-CoV-2 remains a serious health threat to humans and there is an urgent need to develop therapeutics against this deadly virus. Recent scientific evidences have suggested that the main protease (Mpro) enzyme in SARS-CoV-2 can be an ideal drug target due to its crucial role in the viral replication and transcription processes. Therefore, there are ongoing research efforts to identify drug candidates against SARS-CoV-2 Mpro that resulted in hundreds of X-ray crystal structures of ligand-bound Mpro complexes in the Protein Data Bank (PDB) describing the interactions of different fragment chemotypes within different sites of the Mpro. In this work, we performed rigorous molecular dynamics (MD) simulation of 62 reversible ligand–Mpro complexes in the PDB to gain mechanistic insights about their interactions at the atomic level. Using a total of over 3 µs long MD trajectories, we characterized different pockets in the apo Mpro structure, and analyzed the dynamic interactions and binding affinity of ligands within those pockets. Our results identified the key residues that stabilize the ligands in the catalytic sites and other pockets of Mpro. Our analyses unraveled the role of a lateral pocket in the catalytic site in Mpro that is critical for enhancing the ligand binding to the enzyme. We also highlighted the important contribution from HIS163 in the lateral pocket towards ligand binding and affinity against Mpro through computational mutation analyses. Further, we revealed the effects of explicit water molecules and Mpro dimerization in the ligand association with the target. Thus, comprehensive molecular-level insights gained from this work can be useful to identify or design potent small molecule inhibitors against SARS-CoV-2 Mpro. |
format |
article |
author |
Ying Li Weng Shiv Rakesh Naik Nadia Dingelstad Miguel R. Lugo Subha Kalyaanamoorthy Aravindhan Ganesan |
author_facet |
Ying Li Weng Shiv Rakesh Naik Nadia Dingelstad Miguel R. Lugo Subha Kalyaanamoorthy Aravindhan Ganesan |
author_sort |
Ying Li Weng |
title |
Molecular dynamics and in silico mutagenesis on the reversible inhibitor-bound SARS-CoV-2 main protease complexes reveal the role of lateral pocket in enhancing the ligand affinity |
title_short |
Molecular dynamics and in silico mutagenesis on the reversible inhibitor-bound SARS-CoV-2 main protease complexes reveal the role of lateral pocket in enhancing the ligand affinity |
title_full |
Molecular dynamics and in silico mutagenesis on the reversible inhibitor-bound SARS-CoV-2 main protease complexes reveal the role of lateral pocket in enhancing the ligand affinity |
title_fullStr |
Molecular dynamics and in silico mutagenesis on the reversible inhibitor-bound SARS-CoV-2 main protease complexes reveal the role of lateral pocket in enhancing the ligand affinity |
title_full_unstemmed |
Molecular dynamics and in silico mutagenesis on the reversible inhibitor-bound SARS-CoV-2 main protease complexes reveal the role of lateral pocket in enhancing the ligand affinity |
title_sort |
molecular dynamics and in silico mutagenesis on the reversible inhibitor-bound sars-cov-2 main protease complexes reveal the role of lateral pocket in enhancing the ligand affinity |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/95788b7704554fc2891bdc8195c71917 |
work_keys_str_mv |
AT yingliweng moleculardynamicsandinsilicomutagenesisonthereversibleinhibitorboundsarscov2mainproteasecomplexesrevealtheroleoflateralpocketinenhancingtheligandaffinity AT shivrakeshnaik moleculardynamicsandinsilicomutagenesisonthereversibleinhibitorboundsarscov2mainproteasecomplexesrevealtheroleoflateralpocketinenhancingtheligandaffinity AT nadiadingelstad moleculardynamicsandinsilicomutagenesisonthereversibleinhibitorboundsarscov2mainproteasecomplexesrevealtheroleoflateralpocketinenhancingtheligandaffinity AT miguelrlugo moleculardynamicsandinsilicomutagenesisonthereversibleinhibitorboundsarscov2mainproteasecomplexesrevealtheroleoflateralpocketinenhancingtheligandaffinity AT subhakalyaanamoorthy moleculardynamicsandinsilicomutagenesisonthereversibleinhibitorboundsarscov2mainproteasecomplexesrevealtheroleoflateralpocketinenhancingtheligandaffinity AT aravindhanganesan moleculardynamicsandinsilicomutagenesisonthereversibleinhibitorboundsarscov2mainproteasecomplexesrevealtheroleoflateralpocketinenhancingtheligandaffinity |
_version_ |
1718391382553395200 |