Integrated Process Simulation of Non-Oriented Electrical Steel

A tailor-made microstructure, especially regarding grain size and texture, improves the magnetic properties of non-oriented electrical steels. One way to adjust the microstructure is to control the production and processing in great detail. Simulation and modeling approaches can help to evaluate the...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Anett Stöcker, Max Weiner, Grzegorz Korpała, Ulrich Prahl, Xuefei Wei, Johannes Lohmar, Gerhard Hirt, Martin Heller, Sandra Korte-Kerzel, Lucas Böhm, Wolfram Volk, Nora Leuning, Kay Hameyer, Rudolf Kawalla
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
T
Acceso en línea:https://doaj.org/article/9578e147db24456380ed9622897198bb
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:9578e147db24456380ed9622897198bb
record_format dspace
spelling oai:doaj.org-article:9578e147db24456380ed9622897198bb2021-11-11T18:10:31ZIntegrated Process Simulation of Non-Oriented Electrical Steel10.3390/ma142166591996-1944https://doaj.org/article/9578e147db24456380ed9622897198bb2021-11-01T00:00:00Zhttps://www.mdpi.com/1996-1944/14/21/6659https://doaj.org/toc/1996-1944A tailor-made microstructure, especially regarding grain size and texture, improves the magnetic properties of non-oriented electrical steels. One way to adjust the microstructure is to control the production and processing in great detail. Simulation and modeling approaches can help to evaluate the impact of different process parameters and finally select them appropriately. We present individual model approaches for hot rolling, cold rolling, annealing and shear cutting and aim to connect the models to account for the complex interrelationships between the process steps. A layer model combined with a microstructure model describes the grain size evolution during hot rolling. The crystal plasticity finite-element method (CPFEM) predicts the cold-rolling texture. Grain size and texture evolution during annealing is captured by the level-set method and the heat treatment model GraGLeS2D+. The impact of different grain sizes across the sheet thickness on residual stress state is evaluated by the surface model. All models take heterogeneous microstructures across the sheet thickness into account. Furthermore, a relationship is established between process and material parameters and magnetic properties. The basic mathematical principles of the models are explained and demonstrated using laboratory experiments on a non-oriented electrical steel with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3.16</mn></mrow></semantics></math></inline-formula> wt.% Si as an example.Anett StöckerMax WeinerGrzegorz KorpałaUlrich PrahlXuefei WeiJohannes LohmarGerhard HirtMartin HellerSandra Korte-KerzelLucas BöhmWolfram VolkNora LeuningKay HameyerRudolf KawallaMDPI AGarticlenon-oriented electrical steelsimulationgrain sizetextureresidual stressmagnetizationTechnologyTElectrical engineering. Electronics. Nuclear engineeringTK1-9971Engineering (General). Civil engineering (General)TA1-2040MicroscopyQH201-278.5Descriptive and experimental mechanicsQC120-168.85ENMaterials, Vol 14, Iss 6659, p 6659 (2021)
institution DOAJ
collection DOAJ
language EN
topic non-oriented electrical steel
simulation
grain size
texture
residual stress
magnetization
Technology
T
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
Engineering (General). Civil engineering (General)
TA1-2040
Microscopy
QH201-278.5
Descriptive and experimental mechanics
QC120-168.85
spellingShingle non-oriented electrical steel
simulation
grain size
texture
residual stress
magnetization
Technology
T
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
Engineering (General). Civil engineering (General)
TA1-2040
Microscopy
QH201-278.5
Descriptive and experimental mechanics
QC120-168.85
Anett Stöcker
Max Weiner
Grzegorz Korpała
Ulrich Prahl
Xuefei Wei
Johannes Lohmar
Gerhard Hirt
Martin Heller
Sandra Korte-Kerzel
Lucas Böhm
Wolfram Volk
Nora Leuning
Kay Hameyer
Rudolf Kawalla
Integrated Process Simulation of Non-Oriented Electrical Steel
description A tailor-made microstructure, especially regarding grain size and texture, improves the magnetic properties of non-oriented electrical steels. One way to adjust the microstructure is to control the production and processing in great detail. Simulation and modeling approaches can help to evaluate the impact of different process parameters and finally select them appropriately. We present individual model approaches for hot rolling, cold rolling, annealing and shear cutting and aim to connect the models to account for the complex interrelationships between the process steps. A layer model combined with a microstructure model describes the grain size evolution during hot rolling. The crystal plasticity finite-element method (CPFEM) predicts the cold-rolling texture. Grain size and texture evolution during annealing is captured by the level-set method and the heat treatment model GraGLeS2D+. The impact of different grain sizes across the sheet thickness on residual stress state is evaluated by the surface model. All models take heterogeneous microstructures across the sheet thickness into account. Furthermore, a relationship is established between process and material parameters and magnetic properties. The basic mathematical principles of the models are explained and demonstrated using laboratory experiments on a non-oriented electrical steel with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3.16</mn></mrow></semantics></math></inline-formula> wt.% Si as an example.
format article
author Anett Stöcker
Max Weiner
Grzegorz Korpała
Ulrich Prahl
Xuefei Wei
Johannes Lohmar
Gerhard Hirt
Martin Heller
Sandra Korte-Kerzel
Lucas Böhm
Wolfram Volk
Nora Leuning
Kay Hameyer
Rudolf Kawalla
author_facet Anett Stöcker
Max Weiner
Grzegorz Korpała
Ulrich Prahl
Xuefei Wei
Johannes Lohmar
Gerhard Hirt
Martin Heller
Sandra Korte-Kerzel
Lucas Böhm
Wolfram Volk
Nora Leuning
Kay Hameyer
Rudolf Kawalla
author_sort Anett Stöcker
title Integrated Process Simulation of Non-Oriented Electrical Steel
title_short Integrated Process Simulation of Non-Oriented Electrical Steel
title_full Integrated Process Simulation of Non-Oriented Electrical Steel
title_fullStr Integrated Process Simulation of Non-Oriented Electrical Steel
title_full_unstemmed Integrated Process Simulation of Non-Oriented Electrical Steel
title_sort integrated process simulation of non-oriented electrical steel
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/9578e147db24456380ed9622897198bb
work_keys_str_mv AT anettstocker integratedprocesssimulationofnonorientedelectricalsteel
AT maxweiner integratedprocesssimulationofnonorientedelectricalsteel
AT grzegorzkorpała integratedprocesssimulationofnonorientedelectricalsteel
AT ulrichprahl integratedprocesssimulationofnonorientedelectricalsteel
AT xuefeiwei integratedprocesssimulationofnonorientedelectricalsteel
AT johanneslohmar integratedprocesssimulationofnonorientedelectricalsteel
AT gerhardhirt integratedprocesssimulationofnonorientedelectricalsteel
AT martinheller integratedprocesssimulationofnonorientedelectricalsteel
AT sandrakortekerzel integratedprocesssimulationofnonorientedelectricalsteel
AT lucasbohm integratedprocesssimulationofnonorientedelectricalsteel
AT wolframvolk integratedprocesssimulationofnonorientedelectricalsteel
AT noraleuning integratedprocesssimulationofnonorientedelectricalsteel
AT kayhameyer integratedprocesssimulationofnonorientedelectricalsteel
AT rudolfkawalla integratedprocesssimulationofnonorientedelectricalsteel
_version_ 1718431900146597888