Integrated Process Simulation of Non-Oriented Electrical Steel
A tailor-made microstructure, especially regarding grain size and texture, improves the magnetic properties of non-oriented electrical steels. One way to adjust the microstructure is to control the production and processing in great detail. Simulation and modeling approaches can help to evaluate the...
Guardado en:
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9578e147db24456380ed9622897198bb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:9578e147db24456380ed9622897198bb |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:9578e147db24456380ed9622897198bb2021-11-11T18:10:31ZIntegrated Process Simulation of Non-Oriented Electrical Steel10.3390/ma142166591996-1944https://doaj.org/article/9578e147db24456380ed9622897198bb2021-11-01T00:00:00Zhttps://www.mdpi.com/1996-1944/14/21/6659https://doaj.org/toc/1996-1944A tailor-made microstructure, especially regarding grain size and texture, improves the magnetic properties of non-oriented electrical steels. One way to adjust the microstructure is to control the production and processing in great detail. Simulation and modeling approaches can help to evaluate the impact of different process parameters and finally select them appropriately. We present individual model approaches for hot rolling, cold rolling, annealing and shear cutting and aim to connect the models to account for the complex interrelationships between the process steps. A layer model combined with a microstructure model describes the grain size evolution during hot rolling. The crystal plasticity finite-element method (CPFEM) predicts the cold-rolling texture. Grain size and texture evolution during annealing is captured by the level-set method and the heat treatment model GraGLeS2D+. The impact of different grain sizes across the sheet thickness on residual stress state is evaluated by the surface model. All models take heterogeneous microstructures across the sheet thickness into account. Furthermore, a relationship is established between process and material parameters and magnetic properties. The basic mathematical principles of the models are explained and demonstrated using laboratory experiments on a non-oriented electrical steel with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3.16</mn></mrow></semantics></math></inline-formula> wt.% Si as an example.Anett StöckerMax WeinerGrzegorz KorpałaUlrich PrahlXuefei WeiJohannes LohmarGerhard HirtMartin HellerSandra Korte-KerzelLucas BöhmWolfram VolkNora LeuningKay HameyerRudolf KawallaMDPI AGarticlenon-oriented electrical steelsimulationgrain sizetextureresidual stressmagnetizationTechnologyTElectrical engineering. Electronics. Nuclear engineeringTK1-9971Engineering (General). Civil engineering (General)TA1-2040MicroscopyQH201-278.5Descriptive and experimental mechanicsQC120-168.85ENMaterials, Vol 14, Iss 6659, p 6659 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
non-oriented electrical steel simulation grain size texture residual stress magnetization Technology T Electrical engineering. Electronics. Nuclear engineering TK1-9971 Engineering (General). Civil engineering (General) TA1-2040 Microscopy QH201-278.5 Descriptive and experimental mechanics QC120-168.85 |
spellingShingle |
non-oriented electrical steel simulation grain size texture residual stress magnetization Technology T Electrical engineering. Electronics. Nuclear engineering TK1-9971 Engineering (General). Civil engineering (General) TA1-2040 Microscopy QH201-278.5 Descriptive and experimental mechanics QC120-168.85 Anett Stöcker Max Weiner Grzegorz Korpała Ulrich Prahl Xuefei Wei Johannes Lohmar Gerhard Hirt Martin Heller Sandra Korte-Kerzel Lucas Böhm Wolfram Volk Nora Leuning Kay Hameyer Rudolf Kawalla Integrated Process Simulation of Non-Oriented Electrical Steel |
description |
A tailor-made microstructure, especially regarding grain size and texture, improves the magnetic properties of non-oriented electrical steels. One way to adjust the microstructure is to control the production and processing in great detail. Simulation and modeling approaches can help to evaluate the impact of different process parameters and finally select them appropriately. We present individual model approaches for hot rolling, cold rolling, annealing and shear cutting and aim to connect the models to account for the complex interrelationships between the process steps. A layer model combined with a microstructure model describes the grain size evolution during hot rolling. The crystal plasticity finite-element method (CPFEM) predicts the cold-rolling texture. Grain size and texture evolution during annealing is captured by the level-set method and the heat treatment model GraGLeS2D+. The impact of different grain sizes across the sheet thickness on residual stress state is evaluated by the surface model. All models take heterogeneous microstructures across the sheet thickness into account. Furthermore, a relationship is established between process and material parameters and magnetic properties. The basic mathematical principles of the models are explained and demonstrated using laboratory experiments on a non-oriented electrical steel with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3.16</mn></mrow></semantics></math></inline-formula> wt.% Si as an example. |
format |
article |
author |
Anett Stöcker Max Weiner Grzegorz Korpała Ulrich Prahl Xuefei Wei Johannes Lohmar Gerhard Hirt Martin Heller Sandra Korte-Kerzel Lucas Böhm Wolfram Volk Nora Leuning Kay Hameyer Rudolf Kawalla |
author_facet |
Anett Stöcker Max Weiner Grzegorz Korpała Ulrich Prahl Xuefei Wei Johannes Lohmar Gerhard Hirt Martin Heller Sandra Korte-Kerzel Lucas Böhm Wolfram Volk Nora Leuning Kay Hameyer Rudolf Kawalla |
author_sort |
Anett Stöcker |
title |
Integrated Process Simulation of Non-Oriented Electrical Steel |
title_short |
Integrated Process Simulation of Non-Oriented Electrical Steel |
title_full |
Integrated Process Simulation of Non-Oriented Electrical Steel |
title_fullStr |
Integrated Process Simulation of Non-Oriented Electrical Steel |
title_full_unstemmed |
Integrated Process Simulation of Non-Oriented Electrical Steel |
title_sort |
integrated process simulation of non-oriented electrical steel |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/9578e147db24456380ed9622897198bb |
work_keys_str_mv |
AT anettstocker integratedprocesssimulationofnonorientedelectricalsteel AT maxweiner integratedprocesssimulationofnonorientedelectricalsteel AT grzegorzkorpała integratedprocesssimulationofnonorientedelectricalsteel AT ulrichprahl integratedprocesssimulationofnonorientedelectricalsteel AT xuefeiwei integratedprocesssimulationofnonorientedelectricalsteel AT johanneslohmar integratedprocesssimulationofnonorientedelectricalsteel AT gerhardhirt integratedprocesssimulationofnonorientedelectricalsteel AT martinheller integratedprocesssimulationofnonorientedelectricalsteel AT sandrakortekerzel integratedprocesssimulationofnonorientedelectricalsteel AT lucasbohm integratedprocesssimulationofnonorientedelectricalsteel AT wolframvolk integratedprocesssimulationofnonorientedelectricalsteel AT noraleuning integratedprocesssimulationofnonorientedelectricalsteel AT kayhameyer integratedprocesssimulationofnonorientedelectricalsteel AT rudolfkawalla integratedprocesssimulationofnonorientedelectricalsteel |
_version_ |
1718431900146597888 |