Development of a lab-on-a-chip method for rapid assay of Xylella fastidiosa subsp. pauca strain CoDiRO
Abstract Xylella fastidiosa subsp. pauca strain CoDiRO, a pathogen responsible for Olive Quick Decline Syndrome (OQDS), is strongly threatening the agricultural-based economy of South Italy and making its typical landscape collapse. The bacteria can also infect more than other twenty woody or shrub...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/957d42fe6f524c3d9386c783a160791e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Xylella fastidiosa subsp. pauca strain CoDiRO, a pathogen responsible for Olive Quick Decline Syndrome (OQDS), is strongly threatening the agricultural-based economy of South Italy and making its typical landscape collapse. The bacteria can also infect more than other twenty woody or shrub species and quarantine programs are carried out in Italy. Since symptoms of OQDS like leaf scorching and wilting of canopy may appear several months after infection and some hosts are asymptomatic, a tool for the rapid and early screening of plants is desirable, in order to plan a sudden control strategy and apply programs for pest management. X. fastidiosa detection is usually performed by ELISA and PCR methods. In this work, the two standard methods are compared with an innovative on-chip detection strategy for X. fastidiosa assay from leaves samples, based on an electrochemical transduction method. The realized lab-on-chip includes also a microfluidic module and its performances are competitive with conventional diagnostic methods in terms of reliability, but with further advantages of portability, low-costs and ease of use. Thus, the proposed technology has the potential to provide a useful assay method for large-scale monitoring programs. |
---|