Human activity recognition using magnetic induction-based motion signals and deep recurrent neural networks
Designing reliable, scalable and energy efficient sensor-based activity recognition system remains a challenge. Here, the authors demonstrate low power wearable wireless network system based on magnetic induction which is integrated with deep recurrent neural networks for human activity recognition.
Guardado en:
Autores principales: | Negar Golestani, Mahta Moghaddam |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/958eab1ee5d94d459220628520456325 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Author Correction: Human activity recognition using magnetic induction-based motion signals and deep recurrent neural networks
por: Negar Golestani, et al.
Publicado: (2020) -
Wearable magnetic induction-based approach toward 3D motion tracking
por: Negar Golestani, et al.
Publicado: (2021) -
Optimization of Human Motion Recognition Information Processing System Based on GA-BP Neural Network Algorithm
por: Shuwei Zhao
Publicado: (2021) -
Recognition of Eye-Written Characters Using Deep Neural Network
por: Won-Du Chang, et al.
Publicado: (2021) -
Dyskinesia estimation during activities of daily living using wearable motion sensors and deep recurrent networks
por: Murtadha D. Hssayeni, et al.
Publicado: (2021)