Synthetic single cell RNA sequencing data from small pilot studies using deep generative models
Abstract Deep generative models, such as variational autoencoders (VAEs) or deep Boltzmann machines (DBMs), can generate an arbitrary number of synthetic observations after being trained on an initial set of samples. This has mainly been investigated for imaging data but could also be useful for sin...
Guardado en:
Autores principales: | Martin Treppner, Adrián Salas-Bastos, Moritz Hess, Stefan Lenz, Tanja Vogel, Harald Binder |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/959146bec92e4abe9a6e3406415aeb4b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Deep-sequencing protocols influence the results obtained in small-RNA sequencing.
por: Joern Toedling, et al.
Publicado: (2012) -
A deep learning model for predicting next-generation sequencing depth from DNA sequence
por: Jinny X. Zhang, et al.
Publicado: (2021) -
Classification of psychiatric symptoms using deep interaction networks: the CASPIAN-IV study
por: Hamid Reza Marateb, et al.
Publicado: (2021) -
Translating synthetic natural language to database queries with a polyglot deep learning framework
por: Adrián Bazaga, et al.
Publicado: (2021) -
Synthetic data generation with probabilistic Bayesian Networks
por: Grigoriy Gogoshin, et al.
Publicado: (2021)