A Machine Learning Based Downscaling Approach to Produce High Spatio-Temporal Resolution Land Surface Temperature of the Antarctic Dry Valleys from MODIS Data
To monitor environmental and biological processes, Land Surface Temperature (LST) is a central variable, which is highly variable in space and time. This particularly applies to the Antarctic Dry Valleys, which host an ecosystem highly adapted to the extreme conditions in this cold desert. To predic...
Guardado en:
Autores principales: | Lilian-Maite Lezama Valdes, Marwan Katurji, Hanna Meyer |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9598b374fd564188aa71ef7766ce2044 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Spatial Downscaling of MODIS Snow Cover Observations Using Sentinel-2 Snow Products
por: Jesús Revuelto, et al.
Publicado: (2021) -
Dynamical Downscaling of Temperature Variations over the Canadian Prairie Provinces under Climate Change
por: Xiong Zhou, et al.
Publicado: (2021) -
Downscaling Building Energy Consumption Carbon Emissions by Machine Learning
por: Zhuoqun Zhao, et al.
Publicado: (2021) -
VERTICAL TEMPERATURE AND MOISTURE STRUCTURE IN LOWER ATMOSPHERE RETRIVED FROM TERRA/MODIS
por: Kim,Y. S, et al.
Publicado: (2004) -
MODY2 diagnostic issues in adults
por: Irina V. Kononenko, et al.
Publicado: (2019)