Linear mapping approximation of gene regulatory networks with stochastic dynamics
The intractability of most stochastic models of gene regulatory networks (GRNs) limits their utility. Here, the authors present a linear-mapping approximation mapping models onto simpler ones, giving approximate but accurate analytic or semi- analytic solutions for a wide range of model GRNs.
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/959a6486a2594874837b30b8d6153b6a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | The intractability of most stochastic models of gene regulatory networks (GRNs) limits their utility. Here, the authors present a linear-mapping approximation mapping models onto simpler ones, giving approximate but accurate analytic or semi- analytic solutions for a wide range of model GRNs. |
---|