Linear mapping approximation of gene regulatory networks with stochastic dynamics
The intractability of most stochastic models of gene regulatory networks (GRNs) limits their utility. Here, the authors present a linear-mapping approximation mapping models onto simpler ones, giving approximate but accurate analytic or semi- analytic solutions for a wide range of model GRNs.
Guardado en:
Autores principales: | Zhixing Cao, Ramon Grima |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/959a6486a2594874837b30b8d6153b6a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Neural network aided approximation and parameter inference of non-Markovian models of gene expression
por: Qingchao Jiang, et al.
Publicado: (2021) -
Transient hysteresis and inherent stochasticity in gene regulatory networks
por: M. Pájaro, et al.
Publicado: (2019) -
Cox process representation and inference for stochastic reaction–diffusion processes
por: David Schnoerr, et al.
Publicado: (2016) -
Probabilistic threshold analysis by pairwise stochastic approximation for decision-making under uncertainty
por: Takashi Goda, et al.
Publicado: (2021) -
Irrelevance of linear controllability to nonlinear dynamical networks
por: Junjie Jiang, et al.
Publicado: (2019)