A bottleneck model of set-specific capture.

Set-specific contingent attentional capture is a particularly strong form of capture that occurs when multiple attentional sets guide visual search (e.g., "search for green letters" and "search for orange letters"). In this type of capture, a potential target that matches one att...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Katherine Sledge Moore, Daniel H Weissman
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2014
Materias:
R
Q
Acceso en línea:https://doaj.org/article/959d5035ac8b401db1ed8cd00dfeefac
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:959d5035ac8b401db1ed8cd00dfeefac
record_format dspace
spelling oai:doaj.org-article:959d5035ac8b401db1ed8cd00dfeefac2021-11-18T08:33:17ZA bottleneck model of set-specific capture.1932-620310.1371/journal.pone.0088313https://doaj.org/article/959d5035ac8b401db1ed8cd00dfeefac2014-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/24516634/?tool=EBIhttps://doaj.org/toc/1932-6203Set-specific contingent attentional capture is a particularly strong form of capture that occurs when multiple attentional sets guide visual search (e.g., "search for green letters" and "search for orange letters"). In this type of capture, a potential target that matches one attentional set (e.g. a green stimulus) impairs the ability to identify a temporally proximal target that matches another attentional set (e.g. an orange stimulus). In the present study, we investigated whether set-specific capture stems from a bottleneck in working memory or from a depletion of limited resources that are distributed across multiple attentional sets. In each trial, participants searched a rapid serial visual presentation (RSVP) stream for up to three target letters (T1-T3) that could appear in any of three target colors (orange, green, or lavender). The most revealing findings came from trials in which T1 and T2 matched different attentional sets and were both identified. In these trials, T3 accuracy was lower when it did not match T1's set than when it did match, but only when participants failed to identify T2. These findings support a bottleneck model of set-specific capture in which a limited-capacity mechanism in working memory enhances only one attentional set at a time, rather than a resource model in which processing capacity is simultaneously distributed across multiple attentional sets.Katherine Sledge MooreDaniel H WeissmanPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 9, Iss 2, p e88313 (2014)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Katherine Sledge Moore
Daniel H Weissman
A bottleneck model of set-specific capture.
description Set-specific contingent attentional capture is a particularly strong form of capture that occurs when multiple attentional sets guide visual search (e.g., "search for green letters" and "search for orange letters"). In this type of capture, a potential target that matches one attentional set (e.g. a green stimulus) impairs the ability to identify a temporally proximal target that matches another attentional set (e.g. an orange stimulus). In the present study, we investigated whether set-specific capture stems from a bottleneck in working memory or from a depletion of limited resources that are distributed across multiple attentional sets. In each trial, participants searched a rapid serial visual presentation (RSVP) stream for up to three target letters (T1-T3) that could appear in any of three target colors (orange, green, or lavender). The most revealing findings came from trials in which T1 and T2 matched different attentional sets and were both identified. In these trials, T3 accuracy was lower when it did not match T1's set than when it did match, but only when participants failed to identify T2. These findings support a bottleneck model of set-specific capture in which a limited-capacity mechanism in working memory enhances only one attentional set at a time, rather than a resource model in which processing capacity is simultaneously distributed across multiple attentional sets.
format article
author Katherine Sledge Moore
Daniel H Weissman
author_facet Katherine Sledge Moore
Daniel H Weissman
author_sort Katherine Sledge Moore
title A bottleneck model of set-specific capture.
title_short A bottleneck model of set-specific capture.
title_full A bottleneck model of set-specific capture.
title_fullStr A bottleneck model of set-specific capture.
title_full_unstemmed A bottleneck model of set-specific capture.
title_sort bottleneck model of set-specific capture.
publisher Public Library of Science (PLoS)
publishDate 2014
url https://doaj.org/article/959d5035ac8b401db1ed8cd00dfeefac
work_keys_str_mv AT katherinesledgemoore abottleneckmodelofsetspecificcapture
AT danielhweissman abottleneckmodelofsetspecificcapture
AT katherinesledgemoore bottleneckmodelofsetspecificcapture
AT danielhweissman bottleneckmodelofsetspecificcapture
_version_ 1718421635883597824