Dynamic regulation of small RNAs in anthocyanin accumulation during blueberry fruit maturation

Abstract Blueberry is rich in anthocyanins which accumulate during fruit maturation. Previous studies mostly focus on their translational/transcriptional regulation, but usually underestimate their post-transcriptional regulation, e.g. small RNAs. This study aimed to identify sRNAs and their potenti...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Xiaobai Li, Yan Hong, Aaron Jackson, Fangqi Guo
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/95a4cf7b74244612bb91a6e4765b190c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Blueberry is rich in anthocyanins which accumulate during fruit maturation. Previous studies mostly focus on their translational/transcriptional regulation, but usually underestimate their post-transcriptional regulation, e.g. small RNAs. This study aimed to identify sRNAs and their potential pathways associated with anthocyanin biosynthesis. During three typical phases of fruit maturation (green, pink, and blue), we investigated dynamic changes of sRNA by deep sequencing sRNA and examined the interaction of sRNAs with their target genes by degradome and RLM-PCR. During maturation, up-regulation of VcmiRNA156 and VcmiR393 resulted in down-regulation of VcSPLs and VcTIR1/AFBs, respectively. An important gene of anthocyanin biosynthesis, VcDFR, was substantially down-regulated at both the mRNA and protein levels, and potentially responded to regulation of VcSPLs and VcTIR1/AFBs. Additionally, indole acetic acid (IAA) and abscisic acid (ABA) were involved in the regulation of anthocyanin biosynthesis by interacting with VcmiR393-TIR1/AFBs and VcmiRNA319-VcMYBs respectively. This information provides another insight into blueberry anthocyanin biosynthesis.