The Speed of Convergence of the Threshold Estimator of Ruin Probability under the Tempered <i>α</i>-Stable Lévy Subordinator
In this paper, a nonparametric estimator of ruin probability is introduced in a spectrally negative Lévy process where the jump component is a tempered <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</m...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/95a83d3ea8b54a17a1752e49dfc6878a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | In this paper, a nonparametric estimator of ruin probability is introduced in a spectrally negative Lévy process where the jump component is a tempered <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-stable subordinator. Given a discrete record of high-frequency data, a threshold technique is proposed to estimate the mean of the jump size and use the Fourier transform and the Pollaczek–Khinchin formula to construct the estimator of ruin probability. The convergence rate of the integrated squared error for the estimator is studied. |
---|