The Speed of Convergence of the Threshold Estimator of Ruin Probability under the Tempered <i>α</i>-Stable Lévy Subordinator

In this paper, a nonparametric estimator of ruin probability is introduced in a spectrally negative Lévy process where the jump component is a tempered <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</m...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yuan Gao, Honglong You
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/95a83d3ea8b54a17a1752e49dfc6878a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:In this paper, a nonparametric estimator of ruin probability is introduced in a spectrally negative Lévy process where the jump component is a tempered <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-stable subordinator. Given a discrete record of high-frequency data, a threshold technique is proposed to estimate the mean of the jump size and use the Fourier transform and the Pollaczek–Khinchin formula to construct the estimator of ruin probability. The convergence rate of the integrated squared error for the estimator is studied.