The Speed of Convergence of the Threshold Estimator of Ruin Probability under the Tempered <i>α</i>-Stable Lévy Subordinator

In this paper, a nonparametric estimator of ruin probability is introduced in a spectrally negative Lévy process where the jump component is a tempered <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</m...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yuan Gao, Honglong You
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/95a83d3ea8b54a17a1752e49dfc6878a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:95a83d3ea8b54a17a1752e49dfc6878a
record_format dspace
spelling oai:doaj.org-article:95a83d3ea8b54a17a1752e49dfc6878a2021-11-11T18:13:53ZThe Speed of Convergence of the Threshold Estimator of Ruin Probability under the Tempered <i>α</i>-Stable Lévy Subordinator10.3390/math92126542227-7390https://doaj.org/article/95a83d3ea8b54a17a1752e49dfc6878a2021-10-01T00:00:00Zhttps://www.mdpi.com/2227-7390/9/21/2654https://doaj.org/toc/2227-7390In this paper, a nonparametric estimator of ruin probability is introduced in a spectrally negative Lévy process where the jump component is a tempered <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-stable subordinator. Given a discrete record of high-frequency data, a threshold technique is proposed to estimate the mean of the jump size and use the Fourier transform and the Pollaczek–Khinchin formula to construct the estimator of ruin probability. The convergence rate of the integrated squared error for the estimator is studied.Yuan GaoHonglong YouMDPI AGarticleruin probabilityspectrally negative Lévy processFourier transformhigh-frequency dataMathematicsQA1-939ENMathematics, Vol 9, Iss 2654, p 2654 (2021)
institution DOAJ
collection DOAJ
language EN
topic ruin probability
spectrally negative Lévy process
Fourier transform
high-frequency data
Mathematics
QA1-939
spellingShingle ruin probability
spectrally negative Lévy process
Fourier transform
high-frequency data
Mathematics
QA1-939
Yuan Gao
Honglong You
The Speed of Convergence of the Threshold Estimator of Ruin Probability under the Tempered <i>α</i>-Stable Lévy Subordinator
description In this paper, a nonparametric estimator of ruin probability is introduced in a spectrally negative Lévy process where the jump component is a tempered <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-stable subordinator. Given a discrete record of high-frequency data, a threshold technique is proposed to estimate the mean of the jump size and use the Fourier transform and the Pollaczek–Khinchin formula to construct the estimator of ruin probability. The convergence rate of the integrated squared error for the estimator is studied.
format article
author Yuan Gao
Honglong You
author_facet Yuan Gao
Honglong You
author_sort Yuan Gao
title The Speed of Convergence of the Threshold Estimator of Ruin Probability under the Tempered <i>α</i>-Stable Lévy Subordinator
title_short The Speed of Convergence of the Threshold Estimator of Ruin Probability under the Tempered <i>α</i>-Stable Lévy Subordinator
title_full The Speed of Convergence of the Threshold Estimator of Ruin Probability under the Tempered <i>α</i>-Stable Lévy Subordinator
title_fullStr The Speed of Convergence of the Threshold Estimator of Ruin Probability under the Tempered <i>α</i>-Stable Lévy Subordinator
title_full_unstemmed The Speed of Convergence of the Threshold Estimator of Ruin Probability under the Tempered <i>α</i>-Stable Lévy Subordinator
title_sort speed of convergence of the threshold estimator of ruin probability under the tempered <i>α</i>-stable lévy subordinator
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/95a83d3ea8b54a17a1752e49dfc6878a
work_keys_str_mv AT yuangao thespeedofconvergenceofthethresholdestimatorofruinprobabilityunderthetemperediaistablelevysubordinator
AT honglongyou thespeedofconvergenceofthethresholdestimatorofruinprobabilityunderthetemperediaistablelevysubordinator
AT yuangao speedofconvergenceofthethresholdestimatorofruinprobabilityunderthetemperediaistablelevysubordinator
AT honglongyou speedofconvergenceofthethresholdestimatorofruinprobabilityunderthetemperediaistablelevysubordinator
_version_ 1718431900345827328