Memory-Augmented Transformer for Remote Sensing Image Semantic Segmentation
The semantic segmentation of remote sensing images requires distinguishing local regions of different classes and exploiting a uniform global representation of the same-class instances. Such requirements make it necessary for the segmentation methods to extract discriminative local features between...
Guardado en:
Autores principales: | Xin Zhao, Jiayi Guo, Yueting Zhang, Yirong Wu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/95a9750f55f84f13a6ae12e9424ee1a0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
STransFuse: Fusing Swin Transformer and Convolutional Neural Network for Remote Sensing Image Semantic Segmentation
por: Liang Gao, et al.
Publicado: (2021) -
Region-Enhancing Network for Semantic Segmentation of Remote-Sensing Imagery
por: Bo Zhong, et al.
Publicado: (2021) -
SGA-Net: Self-Constructing Graph Attention Neural Network for Semantic Segmentation of Remote Sensing Images
por: Wenjie Zi, et al.
Publicado: (2021) -
Real-Time Identification of Rice Weeds by UAV Low-Altitude Remote Sensing Based on Improved Semantic Segmentation Model
por: Yubin Lan, et al.
Publicado: (2021) -
Attention Mechanism Cloud Detection With Modified FCN for Infrared Remote Sensing Images
por: Liyuan Li, et al.
Publicado: (2021)