Memory-Augmented Transformer for Remote Sensing Image Semantic Segmentation
The semantic segmentation of remote sensing images requires distinguishing local regions of different classes and exploiting a uniform global representation of the same-class instances. Such requirements make it necessary for the segmentation methods to extract discriminative local features between...
Enregistré dans:
Auteurs principaux: | Xin Zhao, Jiayi Guo, Yueting Zhang, Yirong Wu |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/95a9750f55f84f13a6ae12e9424ee1a0 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
STransFuse: Fusing Swin Transformer and Convolutional Neural Network for Remote Sensing Image Semantic Segmentation
par: Liang Gao, et autres
Publié: (2021) -
Region-Enhancing Network for Semantic Segmentation of Remote-Sensing Imagery
par: Bo Zhong, et autres
Publié: (2021) -
SGA-Net: Self-Constructing Graph Attention Neural Network for Semantic Segmentation of Remote Sensing Images
par: Wenjie Zi, et autres
Publié: (2021) -
Real-Time Identification of Rice Weeds by UAV Low-Altitude Remote Sensing Based on Improved Semantic Segmentation Model
par: Yubin Lan, et autres
Publié: (2021) -
Attention Mechanism Cloud Detection With Modified FCN for Infrared Remote Sensing Images
par: Liyuan Li, et autres
Publié: (2021)