Extended live-cell barcoding approach for multiplexed mass cytometry

Abstract Sample barcoding is essential in mass cytometry analysis, since it can eliminate potential procedural variations, enhance throughput, and allow simultaneous sample processing and acquisition. Sample pooling after prior surface staining termed live-cell barcoding is more desirable than intra...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Muharrem Muftuoglu, Li Li, Shaoheng Liang, Duncan Mak, Angelique J. Lin, Junxiang Fang, Jared K. Burks, Ken Chen, Michael Andreeff
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/95adbb71ff4b407bbd8d5e2b9fd48465
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:95adbb71ff4b407bbd8d5e2b9fd48465
record_format dspace
spelling oai:doaj.org-article:95adbb71ff4b407bbd8d5e2b9fd484652021-12-02T17:30:40ZExtended live-cell barcoding approach for multiplexed mass cytometry10.1038/s41598-021-91816-w2045-2322https://doaj.org/article/95adbb71ff4b407bbd8d5e2b9fd484652021-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-91816-whttps://doaj.org/toc/2045-2322Abstract Sample barcoding is essential in mass cytometry analysis, since it can eliminate potential procedural variations, enhance throughput, and allow simultaneous sample processing and acquisition. Sample pooling after prior surface staining termed live-cell barcoding is more desirable than intracellular barcoding, where samples are pooled after fixation and permeabilization, since it does not depend on fixation-sensitive antigenic epitopes. In live-cell barcoding, the general approach uses two tags per sample out of a pool of antibodies paired with five palladium (Pd) isotopes in order to preserve appreciable signal-to-noise ratios and achieve higher yields after sample deconvolution. The number of samples that can be pooled in an experiment using live-cell barcoding is limited, due to weak signal intensities associated with Pd isotopes and the relatively low number of available tags. Here, we describe a novel barcoding technique utilizing 10 different tags, seven cadmium (Cd) tags and three Pd tags, with superior signal intensities that do not impinge on lanthanide detection, which enables enhanced pooling of samples with multiple experimental conditions and markedly enhances sample throughput.Muharrem MuftuogluLi LiShaoheng LiangDuncan MakAngelique J. LinJunxiang FangJared K. BurksKen ChenMichael AndreeffNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-13 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Muharrem Muftuoglu
Li Li
Shaoheng Liang
Duncan Mak
Angelique J. Lin
Junxiang Fang
Jared K. Burks
Ken Chen
Michael Andreeff
Extended live-cell barcoding approach for multiplexed mass cytometry
description Abstract Sample barcoding is essential in mass cytometry analysis, since it can eliminate potential procedural variations, enhance throughput, and allow simultaneous sample processing and acquisition. Sample pooling after prior surface staining termed live-cell barcoding is more desirable than intracellular barcoding, where samples are pooled after fixation and permeabilization, since it does not depend on fixation-sensitive antigenic epitopes. In live-cell barcoding, the general approach uses two tags per sample out of a pool of antibodies paired with five palladium (Pd) isotopes in order to preserve appreciable signal-to-noise ratios and achieve higher yields after sample deconvolution. The number of samples that can be pooled in an experiment using live-cell barcoding is limited, due to weak signal intensities associated with Pd isotopes and the relatively low number of available tags. Here, we describe a novel barcoding technique utilizing 10 different tags, seven cadmium (Cd) tags and three Pd tags, with superior signal intensities that do not impinge on lanthanide detection, which enables enhanced pooling of samples with multiple experimental conditions and markedly enhances sample throughput.
format article
author Muharrem Muftuoglu
Li Li
Shaoheng Liang
Duncan Mak
Angelique J. Lin
Junxiang Fang
Jared K. Burks
Ken Chen
Michael Andreeff
author_facet Muharrem Muftuoglu
Li Li
Shaoheng Liang
Duncan Mak
Angelique J. Lin
Junxiang Fang
Jared K. Burks
Ken Chen
Michael Andreeff
author_sort Muharrem Muftuoglu
title Extended live-cell barcoding approach for multiplexed mass cytometry
title_short Extended live-cell barcoding approach for multiplexed mass cytometry
title_full Extended live-cell barcoding approach for multiplexed mass cytometry
title_fullStr Extended live-cell barcoding approach for multiplexed mass cytometry
title_full_unstemmed Extended live-cell barcoding approach for multiplexed mass cytometry
title_sort extended live-cell barcoding approach for multiplexed mass cytometry
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/95adbb71ff4b407bbd8d5e2b9fd48465
work_keys_str_mv AT muharremmuftuoglu extendedlivecellbarcodingapproachformultiplexedmasscytometry
AT lili extendedlivecellbarcodingapproachformultiplexedmasscytometry
AT shaohengliang extendedlivecellbarcodingapproachformultiplexedmasscytometry
AT duncanmak extendedlivecellbarcodingapproachformultiplexedmasscytometry
AT angeliquejlin extendedlivecellbarcodingapproachformultiplexedmasscytometry
AT junxiangfang extendedlivecellbarcodingapproachformultiplexedmasscytometry
AT jaredkburks extendedlivecellbarcodingapproachformultiplexedmasscytometry
AT kenchen extendedlivecellbarcodingapproachformultiplexedmasscytometry
AT michaelandreeff extendedlivecellbarcodingapproachformultiplexedmasscytometry
_version_ 1718380744949104640