Extended live-cell barcoding approach for multiplexed mass cytometry
Abstract Sample barcoding is essential in mass cytometry analysis, since it can eliminate potential procedural variations, enhance throughput, and allow simultaneous sample processing and acquisition. Sample pooling after prior surface staining termed live-cell barcoding is more desirable than intra...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/95adbb71ff4b407bbd8d5e2b9fd48465 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:95adbb71ff4b407bbd8d5e2b9fd48465 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:95adbb71ff4b407bbd8d5e2b9fd484652021-12-02T17:30:40ZExtended live-cell barcoding approach for multiplexed mass cytometry10.1038/s41598-021-91816-w2045-2322https://doaj.org/article/95adbb71ff4b407bbd8d5e2b9fd484652021-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-91816-whttps://doaj.org/toc/2045-2322Abstract Sample barcoding is essential in mass cytometry analysis, since it can eliminate potential procedural variations, enhance throughput, and allow simultaneous sample processing and acquisition. Sample pooling after prior surface staining termed live-cell barcoding is more desirable than intracellular barcoding, where samples are pooled after fixation and permeabilization, since it does not depend on fixation-sensitive antigenic epitopes. In live-cell barcoding, the general approach uses two tags per sample out of a pool of antibodies paired with five palladium (Pd) isotopes in order to preserve appreciable signal-to-noise ratios and achieve higher yields after sample deconvolution. The number of samples that can be pooled in an experiment using live-cell barcoding is limited, due to weak signal intensities associated with Pd isotopes and the relatively low number of available tags. Here, we describe a novel barcoding technique utilizing 10 different tags, seven cadmium (Cd) tags and three Pd tags, with superior signal intensities that do not impinge on lanthanide detection, which enables enhanced pooling of samples with multiple experimental conditions and markedly enhances sample throughput.Muharrem MuftuogluLi LiShaoheng LiangDuncan MakAngelique J. LinJunxiang FangJared K. BurksKen ChenMichael AndreeffNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-13 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Muharrem Muftuoglu Li Li Shaoheng Liang Duncan Mak Angelique J. Lin Junxiang Fang Jared K. Burks Ken Chen Michael Andreeff Extended live-cell barcoding approach for multiplexed mass cytometry |
description |
Abstract Sample barcoding is essential in mass cytometry analysis, since it can eliminate potential procedural variations, enhance throughput, and allow simultaneous sample processing and acquisition. Sample pooling after prior surface staining termed live-cell barcoding is more desirable than intracellular barcoding, where samples are pooled after fixation and permeabilization, since it does not depend on fixation-sensitive antigenic epitopes. In live-cell barcoding, the general approach uses two tags per sample out of a pool of antibodies paired with five palladium (Pd) isotopes in order to preserve appreciable signal-to-noise ratios and achieve higher yields after sample deconvolution. The number of samples that can be pooled in an experiment using live-cell barcoding is limited, due to weak signal intensities associated with Pd isotopes and the relatively low number of available tags. Here, we describe a novel barcoding technique utilizing 10 different tags, seven cadmium (Cd) tags and three Pd tags, with superior signal intensities that do not impinge on lanthanide detection, which enables enhanced pooling of samples with multiple experimental conditions and markedly enhances sample throughput. |
format |
article |
author |
Muharrem Muftuoglu Li Li Shaoheng Liang Duncan Mak Angelique J. Lin Junxiang Fang Jared K. Burks Ken Chen Michael Andreeff |
author_facet |
Muharrem Muftuoglu Li Li Shaoheng Liang Duncan Mak Angelique J. Lin Junxiang Fang Jared K. Burks Ken Chen Michael Andreeff |
author_sort |
Muharrem Muftuoglu |
title |
Extended live-cell barcoding approach for multiplexed mass cytometry |
title_short |
Extended live-cell barcoding approach for multiplexed mass cytometry |
title_full |
Extended live-cell barcoding approach for multiplexed mass cytometry |
title_fullStr |
Extended live-cell barcoding approach for multiplexed mass cytometry |
title_full_unstemmed |
Extended live-cell barcoding approach for multiplexed mass cytometry |
title_sort |
extended live-cell barcoding approach for multiplexed mass cytometry |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/95adbb71ff4b407bbd8d5e2b9fd48465 |
work_keys_str_mv |
AT muharremmuftuoglu extendedlivecellbarcodingapproachformultiplexedmasscytometry AT lili extendedlivecellbarcodingapproachformultiplexedmasscytometry AT shaohengliang extendedlivecellbarcodingapproachformultiplexedmasscytometry AT duncanmak extendedlivecellbarcodingapproachformultiplexedmasscytometry AT angeliquejlin extendedlivecellbarcodingapproachformultiplexedmasscytometry AT junxiangfang extendedlivecellbarcodingapproachformultiplexedmasscytometry AT jaredkburks extendedlivecellbarcodingapproachformultiplexedmasscytometry AT kenchen extendedlivecellbarcodingapproachformultiplexedmasscytometry AT michaelandreeff extendedlivecellbarcodingapproachformultiplexedmasscytometry |
_version_ |
1718380744949104640 |