A Fast Lightweight 3D Separable Convolutional Neural Network With Multi-Input Multi-Output for Moving Object Detection
Advances in moving object detection have been driven by the active application of deep learning methods. However, many existing models render superior detection accuracy at the cost of high computational complexity and slow inference speed. This fact has hindered the development of such models in mo...
Guardado en:
Autores principales: | Bingxin Hou, Ying Liu, Nam Ling, Lingzhi Liu, Yongxiong Ren |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/95b6bf8fc40a4a729d71a7693329d1e2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Lightweight CNN Architecture for Automatic Modulation Classification
por: Zhongyong Wang, et al.
Publicado: (2021) -
Multi-Scale Warping for Video Frame Interpolation
por: Whan Choi, et al.
Publicado: (2021) -
Sentiment Analysis of Review Text Based on BiGRU-Attention and Hybrid CNN
por: Qiannan Zhu, et al.
Publicado: (2021) -
Automated Asphalt Highway Pavement Crack Detection Based on Deformable Single Shot Multi-Box Detector Under a Complex Environment
por: Kun Yan, et al.
Publicado: (2021) -
Remote Sensing Scene Image Classification Based on Dense Fusion of Multi-level Features
por: Cuiping Shi, et al.
Publicado: (2021)