Load Balancing Strategies for Slice-Based Parallel Versions of JEM Video Encoder
The proportion of video traffic on the internet is expected to reach 82% by 2022, mainly due to the increasing number of consumers and the emergence of new video formats with more demanding features (depth, resolution, multiview, 360, etc.). Efforts are therefore being made to constantly improve vid...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/95ba350d1b7a45b3b8bf0b8941a66ed4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | The proportion of video traffic on the internet is expected to reach 82% by 2022, mainly due to the increasing number of consumers and the emergence of new video formats with more demanding features (depth, resolution, multiview, 360, etc.). Efforts are therefore being made to constantly improve video compression standards to minimize the necessary bandwidth while retaining high video quality levels. In this context, the Joint Collaborative Team on Video Coding has been analyzing new video coding technologies to improve the compression efficiency with respect to the HEVC video coding standard. A software package known as the Joint Exploration Test Model has been proposed to implement and evaluate new video coding tools. In this work, we present parallel versions of the JEM encoder that are particularly suited for shared memory platforms, and can significantly reduce its huge computational complexity. The proposed parallel algorithms are shown to achieve high levels of parallel efficiency. In particular, in the All Intra coding mode, the best of our proposed parallel versions achieves an average efficiency value of 93.4%. They also had high levels of scalability, as shown by the inclusion of an automatic load balancing mechanism. |
---|