Fast and accurate automated recognition of the dominant cells from fecal images based on Faster R-CNN
Abstract Fecal samples can easily be collected and are representative of a person’s current health state; therefore, the demand for routine fecal examination has increased sharply. However, manual operation may pollute the samples, and low efficiency limits the general examination speed; therefore,...
Guardado en:
Autores principales: | Jing Zhang, Xiangzhou Wang, Guangming Ni, Juanxiu Liu, Ruqian Hao, Lin Liu, Yong Liu, Xiaohui Du, Fan Xu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/95c125c38d2d43c6b0dde166b82e2915 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
GMANet: Gradient Mask Attention Network for Finding Clearest Human Fecal Microscopic Image in Autofocus Process
por: Xiangzhou Wang, et al.
Publicado: (2021) -
Short Circuit Recognition for Metal Electrorefining Using an Improved Faster R-CNN With Synthetic Infrared Images
por: Xin Li, et al.
Publicado: (2021) -
Klasifikasi Pola Kain Tenun Melayu Menggunakan Faster R-CNN
por: Yoze Rizki, et al.
Publicado: (2021) -
Pulmonary Nodule Detection Based on Faster R-CNN With Adaptive Anchor Box
por: Chi Cuong Nguyen, et al.
Publicado: (2021) -
SAR Target Detection Based on Domain Adaptive Faster R-CNN with Small Training Data Size
por: Yuchen Guo, et al.
Publicado: (2021)