An in-memory computing architecture based on two-dimensional semiconductors for multiply-accumulate operations
In standard computing architectures, memory and logic circuits are separated, a feature that slows matrix operations vital to deep learning algorithms. Here, the authors present an alternate in-memory architecture and demonstrate a feasible approach for analog matrix multiplication.
Guardado en:
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/95c950a5eea5402c9ba88b7eef5a5b8c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | In standard computing architectures, memory and logic circuits are separated, a feature that slows matrix operations vital to deep learning algorithms. Here, the authors present an alternate in-memory architecture and demonstrate a feasible approach for analog matrix multiplication. |
---|