An in-memory computing architecture based on two-dimensional semiconductors for multiply-accumulate operations
In standard computing architectures, memory and logic circuits are separated, a feature that slows matrix operations vital to deep learning algorithms. Here, the authors present an alternate in-memory architecture and demonstrate a feasible approach for analog matrix multiplication.
Enregistré dans:
Auteurs principaux: | Yin Wang, Hongwei Tang, Yufeng Xie, Xinyu Chen, Shunli Ma, Zhengzong Sun, Qingqing Sun, Lin Chen, Hao Zhu, Jing Wan, Zihan Xu, David Wei Zhang, Peng Zhou, Wenzhong Bao |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/95c950a5eea5402c9ba88b7eef5a5b8c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
FPGA-Based Convolutional Neural Network Accelerator with Resource-Optimized Approximate Multiply-Accumulate Unit
par: Mannhee Cho, et autres
Publié: (2021) -
Mean oscillation and boundedness of multilinear operator related to multiplier operator
par: Zhao Qiaozhen, et autres
Publié: (2021) -
Dimensional crossover in semiconductor nanostructures
par: Matthew P. McDonald, et autres
Publié: (2016) -
ORLICZ - PETTIS THEOREMS FOR MULTIPLIER CONVERGENT OPERATOR VALUED SERIES
par: SWARTZ,CHARLES
Publié: (2003) -
ORLICZ - PETTIS THEOREMS FOR MULTIPLIER CONVERGENT OPERATOR VALUED SERIES
par: SWARTZ,CHARLES
Publié: (2004)