Deep learning for genomics using Janggu
Deep learning is becoming a popular approach for understanding biological processes but can be hard to adapt to new questions. Here, the authors develop Janggu, a python library that aims to ease data acquisition and model evaluation and facilitate deep learning applications in genomics.
Guardado en:
Autores principales: | Wolfgang Kopp, Remo Monti, Annalaura Tamburrini, Uwe Ohler, Altuna Akalin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/95e56ed3fad64c30897d32c4f8a188ef |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Global identification of functional microRNA-mRNA interactions in Drosophila
por: Hans-Hermann Wessels, et al.
Publicado: (2019) -
Predicting lethal courses in critically ill COVID-19 patients using a machine learning model trained on patients with non-COVID-19 viral pneumonia
por: Gregor Lichtner, et al.
Publicado: (2021) -
Deep learning extends de novo protein modelling coverage of genomes using iteratively predicted structural constraints
por: Joe G. Greener, et al.
Publicado: (2019) -
Deep‐learning power and perspectives for genomic selection
por: Osval Antonio Montesinos‐López, et al.
Publicado: (2021) -
Weakly-supervised learning for lung carcinoma classification using deep learning
por: Fahdi Kanavati, et al.
Publicado: (2020)