Predicting natural language descriptions of mono-molecular odorants
It is now possible to predict what a chemical smells like based on its chemical structure, however to date, this has only been done for a small number of odor descriptors. Here, using natural-language semantic representations, the authors demonstrate prediction of a much wider range of descriptors.
Guardado en:
Autores principales: | E. Darío Gutiérrez, Amit Dhurandhar, Andreas Keller, Pablo Meyer, Guillermo A. Cecchi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/95f89c126d6e43dfa8cacab3db4b0b20 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Serum Tumor Marker Dynamics as Predictive Biomarkers in NSCLC Chemo-Immunotherapy and Mono-Immunotherapy Maintenance: A Registry-Based Descriptive Study
por: Lang D, et al.
Publicado: (2020) -
Hemipteran defensive odors trigger predictable color biases in jumping spider predators
por: Michael E. Vickers, et al.
Publicado: (2020) -
Olfactory bulb acetylcholine release dishabituates odor responses and reinstates odor investigation
por: M. Cameron Ogg, et al.
Publicado: (2018) -
Background stimulus delays detection of target stimulus in a familiar odor–odor combination
por: Naomi Gotow, et al.
Publicado: (2021) -
Smell compounds classification using UMAP to increase knowledge of odors and molecular structures linkages.
por: Marylène Rugard, et al.
Publicado: (2021)