Human running performance from real-world big data
Laboratory performance tests provide the gold standard for running performance but do not reflect real running conditions. Here the authors use a large, real world dataset obtained from wearable exercise trackers to extract parameters that accurately predict race times and correlate with training.
Guardado en:
Autores principales: | Thorsten Emig, Jussi Peltonen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/95fe338da55345338094389d0ef298de |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Dynamical heart beat correlations during running
por: Matti Molkkari, et al.
Publicado: (2020) -
Real-time relative qPCR without reference to control samples and estimation of run-specific PCR parameters from run-internal mini-standard curves.
por: Jens Magnus Bernth Jensen, et al.
Publicado: (2010) -
Searching CUDA code autotuning spaces with hardware performance counters: data from benchmarks running on various GPU architectures
por: Jana Hozzová, et al.
Publicado: (2021) -
Real-world data analysis of patients with cancer of unknown primary
por: Sora Kang, et al.
Publicado: (2021) -
Running barefoot leads to lower running stability compared to shod running - results from a randomized controlled study
por: Karsten Hollander, et al.
Publicado: (2021)