Developing machine learning algorithms for meteorological temperature and humidity forecasting at Terengganu state in Malaysia
Abstract Accurately predicting meteorological parameters such as air temperature and humidity plays a crucial role in air quality management. This study proposes different machine learning algorithms: Gradient Boosting Tree (G.B.T.), Random forest (R.F.), Linear regression (LR) and different artific...
Guardado en:
Autores principales: | Marwah Sattar Hanoon, Ali Najah Ahmed, Nur’atiah Zaini, Arif Razzaq, Pavitra Kumar, Mohsen Sherif, Ahmed Sefelnasr, Ahmed El-Shafie |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/960c7fe548c048e181298b3277450f28 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An assessment of sedimentation in Terengganu River, Malaysia using satellite imagery
por: Awatif Aziz, et al.
Publicado: (2021) -
Enhancement of nitrogen prediction accuracy through a new hybrid model using ant colony optimization and an Elman neural network
por: Pavitra Kumar, et al.
Publicado: (2021) -
Suspended sediment load prediction using long short-term memory neural network
por: Nouar AlDahoul, et al.
Publicado: (2021) -
Isolation and Identification of fungi associated with diseased freshwater fishes in Terengganu, Malaysia
por: Khairulbariyyah Zakaria, et al.
Publicado: (2021) -
Developing a Climate Change Vulnerability Index for Coastal City Sustainability, Mitigation, and Adaptation: A Case Study of Kuala Terengganu, Malaysia
por: Milad Bagheri, et al.
Publicado: (2021)