Variable-Gain Higher-Order Sliding Mode Pitch Control of Floating Offshore Wind Turbine

A variable-gain higher-order sliding mode pitch control strategy is proposed for a strongly nonlinear and coupled floating offshore wind power system. The main goal of the proposed strategy is to suppress platform motion caused by random disturbances such as waves and wind speed and to reduce fatigu...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Shuzhen Li, Yaozhen Han, Weigang Pan, Shuang Liu, Mingdong Hou
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/962daf302a3c4d3ead3f2baed02457df
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:A variable-gain higher-order sliding mode pitch control strategy is proposed for a strongly nonlinear and coupled floating offshore wind power system. The main goal of the proposed strategy is to suppress platform motion caused by random disturbances such as waves and wind speed and to reduce fatigue loads and power fluctuations. Feedback control and super-twisting second-order sliding mode algorithm were adopted to carry out collective pitch control and track the rated rotor speed, which involves the factor of platform pitch. To adaptively adjust the collective pitch control parameters according to random wave and wind speed disturbances, the barrier function method was used to conceive adaptive sliding mode control gains. For comparison purposes, the proposed control strategy and PI control were executed under different wind and wave conditions on a FAST and MATLAB/Simulink platform. Furthermore, the fatigue load was calculated by Mlife. The results demonstrate that the proposed scheme is effective and robust. Moreover, it has advantages in resisting external disturbances, especially in suppressing the platform pitch and roll, as well as reducing the power fluctuations and the fatigue load on the blade root.