Seasonal overturn and stratification changes drive deep-water warming in one of Earth’s largest lakes
This study presents hourly data from a thermistor string in Lake Michigan, inspecting its response at depth to surface warming. Based on the data, the study suggests bottom lake temperatures respond to changes in turnover and re-stratification, with the ultimate possibility of the lake shifting from...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/963661d850174036943b00ef5c19d6ca |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | This study presents hourly data from a thermistor string in Lake Michigan, inspecting its response at depth to surface warming. Based on the data, the study suggests bottom lake temperatures respond to changes in turnover and re-stratification, with the ultimate possibility of the lake shifting from dimictic to monomictic. |
---|