Age Label Distribution Learning Based on Unsupervised Comparisons of Faces
Although label distribution learning has made significant progress in the field of face age estimation, unsupervised learning has not been widely adopted and is still an important and challenging task. In this work, we propose an unsupervised contrastive label distribution learning method (UCLD) for...
Enregistré dans:
Auteurs principaux: | , , , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Hindawi-Wiley
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/9640fe6736fd4ff3a1698e9e7d3de9cb |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Résumé: | Although label distribution learning has made significant progress in the field of face age estimation, unsupervised learning has not been widely adopted and is still an important and challenging task. In this work, we propose an unsupervised contrastive label distribution learning method (UCLD) for facial age estimation. This method is helpful to extract semantic and meaningful information of raw faces with preserving high-order correlation between adjacent ages. Similar to the processing method of wireless sensor network, we designed the ConAge network with the contrast learning method. As a result, our model maximizes the similarity of positive samples by data enhancement and simultaneously pushes the clusters of negative samples apart. Compared to state-of-the-art methods, we achieve compelling results on the widely used benchmark, i.e., MORPH. |
---|