Prediction of organic homolytic bond dissociation enthalpies at near chemical accuracy with sub-second computational cost

Bond dissociation enthalpies are key quantities in determining chemical reactivity, their computations with quantum mechanical methods being highly demanding. Here the authors develop a machine learning approach to calculate accurate dissociation enthalpies for organic molecules with sub-second comp...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Peter C. St. John, Yanfei Guan, Yeonjoon Kim, Seonah Kim, Robert S. Paton
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/964aa89eb79f42c7a32be1f33359d400
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:964aa89eb79f42c7a32be1f33359d400
record_format dspace
spelling oai:doaj.org-article:964aa89eb79f42c7a32be1f33359d4002021-12-02T17:02:20ZPrediction of organic homolytic bond dissociation enthalpies at near chemical accuracy with sub-second computational cost10.1038/s41467-020-16201-z2041-1723https://doaj.org/article/964aa89eb79f42c7a32be1f33359d4002020-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-16201-zhttps://doaj.org/toc/2041-1723Bond dissociation enthalpies are key quantities in determining chemical reactivity, their computations with quantum mechanical methods being highly demanding. Here the authors develop a machine learning approach to calculate accurate dissociation enthalpies for organic molecules with sub-second computational cost.Peter C. St. JohnYanfei GuanYeonjoon KimSeonah KimRobert S. PatonNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-12 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Peter C. St. John
Yanfei Guan
Yeonjoon Kim
Seonah Kim
Robert S. Paton
Prediction of organic homolytic bond dissociation enthalpies at near chemical accuracy with sub-second computational cost
description Bond dissociation enthalpies are key quantities in determining chemical reactivity, their computations with quantum mechanical methods being highly demanding. Here the authors develop a machine learning approach to calculate accurate dissociation enthalpies for organic molecules with sub-second computational cost.
format article
author Peter C. St. John
Yanfei Guan
Yeonjoon Kim
Seonah Kim
Robert S. Paton
author_facet Peter C. St. John
Yanfei Guan
Yeonjoon Kim
Seonah Kim
Robert S. Paton
author_sort Peter C. St. John
title Prediction of organic homolytic bond dissociation enthalpies at near chemical accuracy with sub-second computational cost
title_short Prediction of organic homolytic bond dissociation enthalpies at near chemical accuracy with sub-second computational cost
title_full Prediction of organic homolytic bond dissociation enthalpies at near chemical accuracy with sub-second computational cost
title_fullStr Prediction of organic homolytic bond dissociation enthalpies at near chemical accuracy with sub-second computational cost
title_full_unstemmed Prediction of organic homolytic bond dissociation enthalpies at near chemical accuracy with sub-second computational cost
title_sort prediction of organic homolytic bond dissociation enthalpies at near chemical accuracy with sub-second computational cost
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/964aa89eb79f42c7a32be1f33359d400
work_keys_str_mv AT petercstjohn predictionoforganichomolyticbonddissociationenthalpiesatnearchemicalaccuracywithsubsecondcomputationalcost
AT yanfeiguan predictionoforganichomolyticbonddissociationenthalpiesatnearchemicalaccuracywithsubsecondcomputationalcost
AT yeonjoonkim predictionoforganichomolyticbonddissociationenthalpiesatnearchemicalaccuracywithsubsecondcomputationalcost
AT seonahkim predictionoforganichomolyticbonddissociationenthalpiesatnearchemicalaccuracywithsubsecondcomputationalcost
AT robertspaton predictionoforganichomolyticbonddissociationenthalpiesatnearchemicalaccuracywithsubsecondcomputationalcost
_version_ 1718381920583155712