Prediction of organic homolytic bond dissociation enthalpies at near chemical accuracy with sub-second computational cost
Bond dissociation enthalpies are key quantities in determining chemical reactivity, their computations with quantum mechanical methods being highly demanding. Here the authors develop a machine learning approach to calculate accurate dissociation enthalpies for organic molecules with sub-second comp...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/964aa89eb79f42c7a32be1f33359d400 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:964aa89eb79f42c7a32be1f33359d400 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:964aa89eb79f42c7a32be1f33359d4002021-12-02T17:02:20ZPrediction of organic homolytic bond dissociation enthalpies at near chemical accuracy with sub-second computational cost10.1038/s41467-020-16201-z2041-1723https://doaj.org/article/964aa89eb79f42c7a32be1f33359d4002020-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-16201-zhttps://doaj.org/toc/2041-1723Bond dissociation enthalpies are key quantities in determining chemical reactivity, their computations with quantum mechanical methods being highly demanding. Here the authors develop a machine learning approach to calculate accurate dissociation enthalpies for organic molecules with sub-second computational cost.Peter C. St. JohnYanfei GuanYeonjoon KimSeonah KimRobert S. PatonNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-12 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Peter C. St. John Yanfei Guan Yeonjoon Kim Seonah Kim Robert S. Paton Prediction of organic homolytic bond dissociation enthalpies at near chemical accuracy with sub-second computational cost |
description |
Bond dissociation enthalpies are key quantities in determining chemical reactivity, their computations with quantum mechanical methods being highly demanding. Here the authors develop a machine learning approach to calculate accurate dissociation enthalpies for organic molecules with sub-second computational cost. |
format |
article |
author |
Peter C. St. John Yanfei Guan Yeonjoon Kim Seonah Kim Robert S. Paton |
author_facet |
Peter C. St. John Yanfei Guan Yeonjoon Kim Seonah Kim Robert S. Paton |
author_sort |
Peter C. St. John |
title |
Prediction of organic homolytic bond dissociation enthalpies at near chemical accuracy with sub-second computational cost |
title_short |
Prediction of organic homolytic bond dissociation enthalpies at near chemical accuracy with sub-second computational cost |
title_full |
Prediction of organic homolytic bond dissociation enthalpies at near chemical accuracy with sub-second computational cost |
title_fullStr |
Prediction of organic homolytic bond dissociation enthalpies at near chemical accuracy with sub-second computational cost |
title_full_unstemmed |
Prediction of organic homolytic bond dissociation enthalpies at near chemical accuracy with sub-second computational cost |
title_sort |
prediction of organic homolytic bond dissociation enthalpies at near chemical accuracy with sub-second computational cost |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/964aa89eb79f42c7a32be1f33359d400 |
work_keys_str_mv |
AT petercstjohn predictionoforganichomolyticbonddissociationenthalpiesatnearchemicalaccuracywithsubsecondcomputationalcost AT yanfeiguan predictionoforganichomolyticbonddissociationenthalpiesatnearchemicalaccuracywithsubsecondcomputationalcost AT yeonjoonkim predictionoforganichomolyticbonddissociationenthalpiesatnearchemicalaccuracywithsubsecondcomputationalcost AT seonahkim predictionoforganichomolyticbonddissociationenthalpiesatnearchemicalaccuracywithsubsecondcomputationalcost AT robertspaton predictionoforganichomolyticbonddissociationenthalpiesatnearchemicalaccuracywithsubsecondcomputationalcost |
_version_ |
1718381920583155712 |