Prediction of organic homolytic bond dissociation enthalpies at near chemical accuracy with sub-second computational cost
Bond dissociation enthalpies are key quantities in determining chemical reactivity, their computations with quantum mechanical methods being highly demanding. Here the authors develop a machine learning approach to calculate accurate dissociation enthalpies for organic molecules with sub-second comp...
Guardado en:
Autores principales: | Peter C. St. John, Yanfei Guan, Yeonjoon Kim, Seonah Kim, Robert S. Paton |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/964aa89eb79f42c7a32be1f33359d400 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Publisher Correction: Prediction of organic homolytic bond dissociation enthalpies at near chemical accuracy with sub-second computational cost
por: Peter C. St. John, et al.
Publicado: (2020) -
The Melt Enthalpy of Pu<sub>6</sub>Fe
por: Joshua D. Coe, et al.
Publicado: (2021) -
Study the Dissociation Enthalpies for R134a Clathrate Hydrate in Binary and Ternary Systems
por: Riyadh S. AL Mukhtar, et al.
Publicado: (2018) -
Dataset of bond enthalpies (εAA, εAB, εBB) in 975 binary intermetallic compounds
por: Daniel Miracle, et al.
Publicado: (2021) -
Vibrational control of selective bond cleavage in dissociative chemisorption of methanol on Cu(111)
por: Jialu Chen, et al.
Publicado: (2018)