Algebraic graph-assisted bidirectional transformers for molecular property prediction
Despite considerable efforts, quantitative prediction of various molecular properties remains a challenge. Here, the authors propose an algebraic graph-assisted bidirectional transformer, which can incorporate massive unlabeled molecular data into molecular representations via a self-supervised lear...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/964aeff00e454f149f1ac6578c7f6305 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:964aeff00e454f149f1ac6578c7f6305 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:964aeff00e454f149f1ac6578c7f63052021-12-02T14:59:27ZAlgebraic graph-assisted bidirectional transformers for molecular property prediction10.1038/s41467-021-23720-w2041-1723https://doaj.org/article/964aeff00e454f149f1ac6578c7f63052021-06-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-23720-whttps://doaj.org/toc/2041-1723Despite considerable efforts, quantitative prediction of various molecular properties remains a challenge. Here, the authors propose an algebraic graph-assisted bidirectional transformer, which can incorporate massive unlabeled molecular data into molecular representations via a self-supervised learning strategy and assisted with 3D stereochemical information from graphs.Dong ChenKaifu GaoDuc Duy NguyenXin ChenYi JiangGuo-Wei WeiFeng PanNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-9 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Dong Chen Kaifu Gao Duc Duy Nguyen Xin Chen Yi Jiang Guo-Wei Wei Feng Pan Algebraic graph-assisted bidirectional transformers for molecular property prediction |
description |
Despite considerable efforts, quantitative prediction of various molecular properties remains a challenge. Here, the authors propose an algebraic graph-assisted bidirectional transformer, which can incorporate massive unlabeled molecular data into molecular representations via a self-supervised learning strategy and assisted with 3D stereochemical information from graphs. |
format |
article |
author |
Dong Chen Kaifu Gao Duc Duy Nguyen Xin Chen Yi Jiang Guo-Wei Wei Feng Pan |
author_facet |
Dong Chen Kaifu Gao Duc Duy Nguyen Xin Chen Yi Jiang Guo-Wei Wei Feng Pan |
author_sort |
Dong Chen |
title |
Algebraic graph-assisted bidirectional transformers for molecular property prediction |
title_short |
Algebraic graph-assisted bidirectional transformers for molecular property prediction |
title_full |
Algebraic graph-assisted bidirectional transformers for molecular property prediction |
title_fullStr |
Algebraic graph-assisted bidirectional transformers for molecular property prediction |
title_full_unstemmed |
Algebraic graph-assisted bidirectional transformers for molecular property prediction |
title_sort |
algebraic graph-assisted bidirectional transformers for molecular property prediction |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/964aeff00e454f149f1ac6578c7f6305 |
work_keys_str_mv |
AT dongchen algebraicgraphassistedbidirectionaltransformersformolecularpropertyprediction AT kaifugao algebraicgraphassistedbidirectionaltransformersformolecularpropertyprediction AT ducduynguyen algebraicgraphassistedbidirectionaltransformersformolecularpropertyprediction AT xinchen algebraicgraphassistedbidirectionaltransformersformolecularpropertyprediction AT yijiang algebraicgraphassistedbidirectionaltransformersformolecularpropertyprediction AT guoweiwei algebraicgraphassistedbidirectionaltransformersformolecularpropertyprediction AT fengpan algebraicgraphassistedbidirectionaltransformersformolecularpropertyprediction |
_version_ |
1718389216894779392 |