Algebraic graph-assisted bidirectional transformers for molecular property prediction

Despite considerable efforts, quantitative prediction of various molecular properties remains a challenge. Here, the authors propose an algebraic graph-assisted bidirectional transformer, which can incorporate massive unlabeled molecular data into molecular representations via a self-supervised lear...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Dong Chen, Kaifu Gao, Duc Duy Nguyen, Xin Chen, Yi Jiang, Guo-Wei Wei, Feng Pan
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/964aeff00e454f149f1ac6578c7f6305
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:964aeff00e454f149f1ac6578c7f6305
record_format dspace
spelling oai:doaj.org-article:964aeff00e454f149f1ac6578c7f63052021-12-02T14:59:27ZAlgebraic graph-assisted bidirectional transformers for molecular property prediction10.1038/s41467-021-23720-w2041-1723https://doaj.org/article/964aeff00e454f149f1ac6578c7f63052021-06-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-23720-whttps://doaj.org/toc/2041-1723Despite considerable efforts, quantitative prediction of various molecular properties remains a challenge. Here, the authors propose an algebraic graph-assisted bidirectional transformer, which can incorporate massive unlabeled molecular data into molecular representations via a self-supervised learning strategy and assisted with 3D stereochemical information from graphs.Dong ChenKaifu GaoDuc Duy NguyenXin ChenYi JiangGuo-Wei WeiFeng PanNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-9 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Dong Chen
Kaifu Gao
Duc Duy Nguyen
Xin Chen
Yi Jiang
Guo-Wei Wei
Feng Pan
Algebraic graph-assisted bidirectional transformers for molecular property prediction
description Despite considerable efforts, quantitative prediction of various molecular properties remains a challenge. Here, the authors propose an algebraic graph-assisted bidirectional transformer, which can incorporate massive unlabeled molecular data into molecular representations via a self-supervised learning strategy and assisted with 3D stereochemical information from graphs.
format article
author Dong Chen
Kaifu Gao
Duc Duy Nguyen
Xin Chen
Yi Jiang
Guo-Wei Wei
Feng Pan
author_facet Dong Chen
Kaifu Gao
Duc Duy Nguyen
Xin Chen
Yi Jiang
Guo-Wei Wei
Feng Pan
author_sort Dong Chen
title Algebraic graph-assisted bidirectional transformers for molecular property prediction
title_short Algebraic graph-assisted bidirectional transformers for molecular property prediction
title_full Algebraic graph-assisted bidirectional transformers for molecular property prediction
title_fullStr Algebraic graph-assisted bidirectional transformers for molecular property prediction
title_full_unstemmed Algebraic graph-assisted bidirectional transformers for molecular property prediction
title_sort algebraic graph-assisted bidirectional transformers for molecular property prediction
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/964aeff00e454f149f1ac6578c7f6305
work_keys_str_mv AT dongchen algebraicgraphassistedbidirectionaltransformersformolecularpropertyprediction
AT kaifugao algebraicgraphassistedbidirectionaltransformersformolecularpropertyprediction
AT ducduynguyen algebraicgraphassistedbidirectionaltransformersformolecularpropertyprediction
AT xinchen algebraicgraphassistedbidirectionaltransformersformolecularpropertyprediction
AT yijiang algebraicgraphassistedbidirectionaltransformersformolecularpropertyprediction
AT guoweiwei algebraicgraphassistedbidirectionaltransformersformolecularpropertyprediction
AT fengpan algebraicgraphassistedbidirectionaltransformersformolecularpropertyprediction
_version_ 1718389216894779392