EMPIRICAL MODE DECOMPOSITION BASED ON THETA METHOD FOR FORECASTING DAILY STOCK PRICE
Forecasting is a challenging task as time series data exhibit many features that cannot be captured by a single model. Therefore, many researchers have proposed various hybrid models in order to accommodate these features to improve forecasting results. This work proposed a hybrid method between Emp...
Guardado en:
Autores principales: | Mohammad Raquibul Hossain, Mohd Tahir Ismail |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
UUM Press
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/96581ed085524d54a4df21d3ed7dd851 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Depth of anesthesia prediction via EEG signals using convolutional neural network and ensemble empirical mode decomposition
por: Ravichandra Madanu, et al.
Publicado: (2021) -
Application of Empirical Mode Decomposition and Extreme Learning Machine Algorithms on Prediction of the Surface Vibration Signal
por: Yan Shen, et al.
Publicado: (2021) -
Empirical mode decomposition of multiphase flows in porous media: characteristic scales and speed of convergence
por: Nicolás Echebarrena, et al.
Publicado: (2019) -
ANALYSIS OF MACHINE LEARNING METHODS FOR PREDICTIONS OF STOCK EXCHANGE SHARE PRICES
por: V. Serbin, et al.
Publicado: (2021) -
A convergence proof for local mode filtering
por: Shuoyan Zhang, et al.
Publicado: (2021)