Reconstructing cell cycle and disease progression using deep learning
The interpretation of information-rich, high-throughput single-cell data is a challenge requiring sophisticated computational tools. Here the authors demonstrate a deep convolutional neural network that can classify cell cycle status on-the-fly.
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/967a554eed1a48ca89b012f67075b3c9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:967a554eed1a48ca89b012f67075b3c9 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:967a554eed1a48ca89b012f67075b3c92021-12-02T14:42:24ZReconstructing cell cycle and disease progression using deep learning10.1038/s41467-017-00623-32041-1723https://doaj.org/article/967a554eed1a48ca89b012f67075b3c92017-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-017-00623-3https://doaj.org/toc/2041-1723The interpretation of information-rich, high-throughput single-cell data is a challenge requiring sophisticated computational tools. Here the authors demonstrate a deep convolutional neural network that can classify cell cycle status on-the-fly.Philipp EulenbergNiklas KöhlerThomas BlasiAndrew FilbyAnne E. CarpenterPaul ReesFabian J. TheisF. Alexander WolfNature PortfolioarticleScienceQENNature Communications, Vol 8, Iss 1, Pp 1-6 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Philipp Eulenberg Niklas Köhler Thomas Blasi Andrew Filby Anne E. Carpenter Paul Rees Fabian J. Theis F. Alexander Wolf Reconstructing cell cycle and disease progression using deep learning |
description |
The interpretation of information-rich, high-throughput single-cell data is a challenge requiring sophisticated computational tools. Here the authors demonstrate a deep convolutional neural network that can classify cell cycle status on-the-fly. |
format |
article |
author |
Philipp Eulenberg Niklas Köhler Thomas Blasi Andrew Filby Anne E. Carpenter Paul Rees Fabian J. Theis F. Alexander Wolf |
author_facet |
Philipp Eulenberg Niklas Köhler Thomas Blasi Andrew Filby Anne E. Carpenter Paul Rees Fabian J. Theis F. Alexander Wolf |
author_sort |
Philipp Eulenberg |
title |
Reconstructing cell cycle and disease progression using deep learning |
title_short |
Reconstructing cell cycle and disease progression using deep learning |
title_full |
Reconstructing cell cycle and disease progression using deep learning |
title_fullStr |
Reconstructing cell cycle and disease progression using deep learning |
title_full_unstemmed |
Reconstructing cell cycle and disease progression using deep learning |
title_sort |
reconstructing cell cycle and disease progression using deep learning |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/967a554eed1a48ca89b012f67075b3c9 |
work_keys_str_mv |
AT philippeulenberg reconstructingcellcycleanddiseaseprogressionusingdeeplearning AT niklaskohler reconstructingcellcycleanddiseaseprogressionusingdeeplearning AT thomasblasi reconstructingcellcycleanddiseaseprogressionusingdeeplearning AT andrewfilby reconstructingcellcycleanddiseaseprogressionusingdeeplearning AT anneecarpenter reconstructingcellcycleanddiseaseprogressionusingdeeplearning AT paulrees reconstructingcellcycleanddiseaseprogressionusingdeeplearning AT fabianjtheis reconstructingcellcycleanddiseaseprogressionusingdeeplearning AT falexanderwolf reconstructingcellcycleanddiseaseprogressionusingdeeplearning |
_version_ |
1718389703173996544 |