Reconstructing cell cycle and disease progression using deep learning

The interpretation of information-rich, high-throughput single-cell data is a challenge requiring sophisticated computational tools. Here the authors demonstrate a deep convolutional neural network that can classify cell cycle status on-the-fly.

Guardado en:
Detalles Bibliográficos
Autores principales: Philipp Eulenberg, Niklas Köhler, Thomas Blasi, Andrew Filby, Anne E. Carpenter, Paul Rees, Fabian J. Theis, F. Alexander Wolf
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
Q
Acceso en línea:https://doaj.org/article/967a554eed1a48ca89b012f67075b3c9
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:967a554eed1a48ca89b012f67075b3c9
record_format dspace
spelling oai:doaj.org-article:967a554eed1a48ca89b012f67075b3c92021-12-02T14:42:24ZReconstructing cell cycle and disease progression using deep learning10.1038/s41467-017-00623-32041-1723https://doaj.org/article/967a554eed1a48ca89b012f67075b3c92017-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-017-00623-3https://doaj.org/toc/2041-1723The interpretation of information-rich, high-throughput single-cell data is a challenge requiring sophisticated computational tools. Here the authors demonstrate a deep convolutional neural network that can classify cell cycle status on-the-fly.Philipp EulenbergNiklas KöhlerThomas BlasiAndrew FilbyAnne E. CarpenterPaul ReesFabian J. TheisF. Alexander WolfNature PortfolioarticleScienceQENNature Communications, Vol 8, Iss 1, Pp 1-6 (2017)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Philipp Eulenberg
Niklas Köhler
Thomas Blasi
Andrew Filby
Anne E. Carpenter
Paul Rees
Fabian J. Theis
F. Alexander Wolf
Reconstructing cell cycle and disease progression using deep learning
description The interpretation of information-rich, high-throughput single-cell data is a challenge requiring sophisticated computational tools. Here the authors demonstrate a deep convolutional neural network that can classify cell cycle status on-the-fly.
format article
author Philipp Eulenberg
Niklas Köhler
Thomas Blasi
Andrew Filby
Anne E. Carpenter
Paul Rees
Fabian J. Theis
F. Alexander Wolf
author_facet Philipp Eulenberg
Niklas Köhler
Thomas Blasi
Andrew Filby
Anne E. Carpenter
Paul Rees
Fabian J. Theis
F. Alexander Wolf
author_sort Philipp Eulenberg
title Reconstructing cell cycle and disease progression using deep learning
title_short Reconstructing cell cycle and disease progression using deep learning
title_full Reconstructing cell cycle and disease progression using deep learning
title_fullStr Reconstructing cell cycle and disease progression using deep learning
title_full_unstemmed Reconstructing cell cycle and disease progression using deep learning
title_sort reconstructing cell cycle and disease progression using deep learning
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/967a554eed1a48ca89b012f67075b3c9
work_keys_str_mv AT philippeulenberg reconstructingcellcycleanddiseaseprogressionusingdeeplearning
AT niklaskohler reconstructingcellcycleanddiseaseprogressionusingdeeplearning
AT thomasblasi reconstructingcellcycleanddiseaseprogressionusingdeeplearning
AT andrewfilby reconstructingcellcycleanddiseaseprogressionusingdeeplearning
AT anneecarpenter reconstructingcellcycleanddiseaseprogressionusingdeeplearning
AT paulrees reconstructingcellcycleanddiseaseprogressionusingdeeplearning
AT fabianjtheis reconstructingcellcycleanddiseaseprogressionusingdeeplearning
AT falexanderwolf reconstructingcellcycleanddiseaseprogressionusingdeeplearning
_version_ 1718389703173996544