Reconstructing cell cycle and disease progression using deep learning
The interpretation of information-rich, high-throughput single-cell data is a challenge requiring sophisticated computational tools. Here the authors demonstrate a deep convolutional neural network that can classify cell cycle status on-the-fly.
Guardado en:
Autores principales: | Philipp Eulenberg, Niklas Köhler, Thomas Blasi, Andrew Filby, Anne E. Carpenter, Paul Rees, Fabian J. Theis, F. Alexander Wolf |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/967a554eed1a48ca89b012f67075b3c9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Label-free cell cycle analysis for high-throughput imaging flow cytometry
por: Thomas Blasi, et al.
Publicado: (2016) -
Deep learning the collisional cross sections of the peptide universe from a million experimental values
por: Florian Meier, et al.
Publicado: (2021) -
Deep learning for irregularly and regularly missing data reconstruction
por: Xintao Chai, et al.
Publicado: (2020) -
Deep Learning-Based Image Reconstruction for CT Angiography of the Aorta
por: Andra Heinrich, et al.
Publicado: (2021) -
Deep-learning based reconstruction of the stomach from monoscopic video data
por: Hackner Ralf, et al.
Publicado: (2020)