Efficient radiational outcoupling of electromagnetic energy from hyperbolic metamaterial resonators
Abstract Hyperbolic metamaterials were initially proposed in optics to boost radiation efficiencies of quantum emitters. Adopting this concept for antenna design allows approaching long-standing contests in radio physics. For example, broadband impedance matching, accompanied with moderately high an...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/967e04cc891d44aa9541b48517f6d315 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:967e04cc891d44aa9541b48517f6d315 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:967e04cc891d44aa9541b48517f6d3152021-12-02T12:42:27ZEfficient radiational outcoupling of electromagnetic energy from hyperbolic metamaterial resonators10.1038/s41598-020-78981-02045-2322https://doaj.org/article/967e04cc891d44aa9541b48517f6d3152020-12-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-78981-0https://doaj.org/toc/2045-2322Abstract Hyperbolic metamaterials were initially proposed in optics to boost radiation efficiencies of quantum emitters. Adopting this concept for antenna design allows approaching long-standing contests in radio physics. For example, broadband impedance matching, accompanied with moderately high antenna gain, is among the existent challenges. Here we propose employing hyperbolic metamaterials for a broadband impedance matching, while a structured layer on top of a metamaterials slab ensures an efficient and directive energy outcoupling to a free space. In particular, a subwavelength loop antenna, placed underneath the matching layer, efficiently excites bulk metamaterial modes, which have well-resolved spatial–temporal separation owing to the hypebolicity of effective permeability tensor. Interplaying chromatic and modal dispersions enable to map different frequencies into non overlapping spatial locations within a compact subwavelength hyperbolic slab. The outcoupling of energy to the free space is obtained by patterning the slab with additional resonant elements, e.g. high index dielectric spheres. As the result, two-order of magnitude improvement in linear gain of the device is predicted. The proposed new architecture can find a use in applications, where multiband or broadband compact devices are required.Ildar YusupovDmitry FilonovTatyana VoshevaViktor PodolskiyPavel GinzburgNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 10, Iss 1, Pp 1-7 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Ildar Yusupov Dmitry Filonov Tatyana Vosheva Viktor Podolskiy Pavel Ginzburg Efficient radiational outcoupling of electromagnetic energy from hyperbolic metamaterial resonators |
description |
Abstract Hyperbolic metamaterials were initially proposed in optics to boost radiation efficiencies of quantum emitters. Adopting this concept for antenna design allows approaching long-standing contests in radio physics. For example, broadband impedance matching, accompanied with moderately high antenna gain, is among the existent challenges. Here we propose employing hyperbolic metamaterials for a broadband impedance matching, while a structured layer on top of a metamaterials slab ensures an efficient and directive energy outcoupling to a free space. In particular, a subwavelength loop antenna, placed underneath the matching layer, efficiently excites bulk metamaterial modes, which have well-resolved spatial–temporal separation owing to the hypebolicity of effective permeability tensor. Interplaying chromatic and modal dispersions enable to map different frequencies into non overlapping spatial locations within a compact subwavelength hyperbolic slab. The outcoupling of energy to the free space is obtained by patterning the slab with additional resonant elements, e.g. high index dielectric spheres. As the result, two-order of magnitude improvement in linear gain of the device is predicted. The proposed new architecture can find a use in applications, where multiband or broadband compact devices are required. |
format |
article |
author |
Ildar Yusupov Dmitry Filonov Tatyana Vosheva Viktor Podolskiy Pavel Ginzburg |
author_facet |
Ildar Yusupov Dmitry Filonov Tatyana Vosheva Viktor Podolskiy Pavel Ginzburg |
author_sort |
Ildar Yusupov |
title |
Efficient radiational outcoupling of electromagnetic energy from hyperbolic metamaterial resonators |
title_short |
Efficient radiational outcoupling of electromagnetic energy from hyperbolic metamaterial resonators |
title_full |
Efficient radiational outcoupling of electromagnetic energy from hyperbolic metamaterial resonators |
title_fullStr |
Efficient radiational outcoupling of electromagnetic energy from hyperbolic metamaterial resonators |
title_full_unstemmed |
Efficient radiational outcoupling of electromagnetic energy from hyperbolic metamaterial resonators |
title_sort |
efficient radiational outcoupling of electromagnetic energy from hyperbolic metamaterial resonators |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/967e04cc891d44aa9541b48517f6d315 |
work_keys_str_mv |
AT ildaryusupov efficientradiationaloutcouplingofelectromagneticenergyfromhyperbolicmetamaterialresonators AT dmitryfilonov efficientradiationaloutcouplingofelectromagneticenergyfromhyperbolicmetamaterialresonators AT tatyanavosheva efficientradiationaloutcouplingofelectromagneticenergyfromhyperbolicmetamaterialresonators AT viktorpodolskiy efficientradiationaloutcouplingofelectromagneticenergyfromhyperbolicmetamaterialresonators AT pavelginzburg efficientradiationaloutcouplingofelectromagneticenergyfromhyperbolicmetamaterialresonators |
_version_ |
1718393699448127488 |