RapidEELS: machine learning for denoising and classification in rapid acquisition electron energy loss spectroscopy
Abstract Recent advances in detectors for imaging and spectroscopy have afforded in situ, rapid acquisition of hyperspectral data. While electron energy loss spectroscopy (EELS) data acquisition speeds with electron counting are regularly reaching 400 frames per second with near-zero read noise, sig...
Guardado en:
Autores principales: | Cassandra M. Pate, James L. Hart, Mitra L. Taheri |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9695c40528ec45e6bdfa40569fdb0f50 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Direct Detection Electron Energy-Loss Spectroscopy: A Method to Push the Limits of Resolution and Sensitivity
por: James L. Hart, et al.
Publicado: (2017) -
Rapid mapping of polarization switching through complete information acquisition
por: Suhas Somnath, et al.
Publicado: (2016) -
Author Correction: Rapid diagnosis of COVID-19 using FT-IR ATR spectroscopy and machine learning
por: Marcelo Saito Nogueira, et al.
Publicado: (2021) -
Rapid, label-free classification of tumor-reactive T cell killing with quantitative phase microscopy and machine learning
por: Diane N. H. Kim, et al.
Publicado: (2021) -
Sleep and Second-Language Acquisition Revisited: The Role of Sleep Spindles and Rapid Eye Movements
por: Thompson K, et al.
Publicado: (2021)