Impact of smoking cannabidiol (CBD)-rich marijuana on driving ability
To investigate effects of smoking cannabidiol (CBD)-rich marijuana on driving ability and determine free CBD and Δ9-tetrahydrocannabinol (THC) concentrations in capillary blood samples, a randomised, double-blind, placebo-controlled, two-way crossover pilot study was conducted with 33 participants....
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Taylor & Francis Group
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/96a0ba7a3f0f4514af4285521e32bd7b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | To investigate effects of smoking cannabidiol (CBD)-rich marijuana on driving ability and determine free CBD and Δ9-tetrahydrocannabinol (THC) concentrations in capillary blood samples, a randomised, double-blind, placebo-controlled, two-way crossover pilot study was conducted with 33 participants. Participants smoked a joint containing 500 mg of tobacco and either 500 mg of CBD-rich marijuana (16.6% total CBD; 0.9% total THC) or 500 mg of a placebo substance, then performed three different dimensions of the Vienna Test System TRAFFIC examining reaction time, behaviour under stress, and concentration performance. For further assessment of participants’ fitness to drive, three tests of balance and coordination were evaluated and vital signs (blood pressure and pulse) were measured. Dried blood spot samples of capillary blood were taken after smoking and after completion of the tests to determine the cannabinoid concentrations (CBD, THC and THC-metabolites). The results revealed no significant differences between the effects of smoking CBD-rich marijuana and placebo on reaction time, motor time, behaviour under stress, or concentration performance. Maximum free CBD and THC concentrations in capillary blood were detected shortly after smoking, ranging between 2.6–440.0 ng/mL and 6.7–102.0 ng/mL, respectively. After 45 min, capillary blood concentrations had already declined and were in the range of 1.9–135.0 ng/mL (free CBD) and 0.9–38.0 ng/mL (free THC). Although the observed levels of free THC concentrations have been reported to cause symptoms of impairment in previous studies in which THC-rich marijuana was smoked, no signs of impairment were found in the current study. This finding suggests that higher CBD concentrations cause a negative allosteric effect in the endocannabinoid system, preventing the formation of such symptoms. Nevertheless, it is recommended that consumers refrain from driving for several hours after smoking CBD-rich marijuana, as legal THC concentration limits may be exceeded. Supplemental data for this article is available online at https://doi.org/10.1080/20961790.2021.1946924 . |
---|