Optainet-based technique for SVR feature selection and parameters optimization for software cost prediction
The software cost prediction is a crucial element for a project’s success because it helps the project managers to efficiently estimate the needed effort for any project. There exist in literature many machine learning methods like decision trees, artificial neural networks (ANN), and support vector...
Guardado en:
Autores principales: | Najm Assia, Zakrani Abdelali, Marzak Abdelaziz |
---|---|
Formato: | article |
Lenguaje: | EN FR |
Publicado: |
EDP Sciences
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/96a67bb2bb4f4e85968a86c69044db49 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Intelligent Prediction of Aeroengine Wear Based on the SVR Optimized by GMPSO
por: Bo Zheng, et al.
Publicado: (2021) -
Prediction of House Price Index Based on Bagging Integrated WOA-SVR Model
por: Xiang Wang, et al.
Publicado: (2021) -
RENT—Repeated Elastic Net Technique for Feature Selection
por: Anna Jenul, et al.
Publicado: (2021) -
Optimization of Wear Parameters in AISI 4340 Steel
por: Abbas Khammas Hussein
Publicado: (2014) -
Optimization of MFA parameters for harrowing crops with simultaneous fertilization
por: Serguntsov Alexander, et al.
Publicado: (2021)