Text Sentiment Analysis of German Multilevel Features Based on Self-Attention Mechanism
In this paper, we propose a multilevel feature representation method that combines word-level features, such as German morphology and slang, and sentence-level features, such as special symbols and English-translated sentiment information, and build a deep learning model for German sentiment classif...
Guardado en:
Autor principal: | Xiang Li |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi-Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/96bd341019f14d4f8ea5d9fc49c5a69d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Personalized Federated Learning for ECG Classification Based on Feature Alignment
por: Renjie Tang, et al.
Publicado: (2021) -
Dominant Feature Selection and Machine Learning-Based Hybrid Approach to Analyze Android Ransomware
por: Tanya Gera, et al.
Publicado: (2021) -
Network Intrusion Detection Model Based on Improved BYOL Self-Supervised Learning
por: Zhendong Wang, et al.
Publicado: (2021) -
Research on Embroidery Feature Recognition Algorithm of Traditional National Costumes Based on Double-Layer Model
por: Hu Juan
Publicado: (2021) -
Sentiment Analysis of Review Text Based on BiGRU-Attention and Hybrid CNN
por: Qiannan Zhu, et al.
Publicado: (2021)