Text Sentiment Analysis of German Multilevel Features Based on Self-Attention Mechanism
In this paper, we propose a multilevel feature representation method that combines word-level features, such as German morphology and slang, and sentence-level features, such as special symbols and English-translated sentiment information, and build a deep learning model for German sentiment classif...
Enregistré dans:
Auteur principal: | Xiang Li |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Hindawi-Wiley
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/96bd341019f14d4f8ea5d9fc49c5a69d |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Personalized Federated Learning for ECG Classification Based on Feature Alignment
par: Renjie Tang, et autres
Publié: (2021) -
Dominant Feature Selection and Machine Learning-Based Hybrid Approach to Analyze Android Ransomware
par: Tanya Gera, et autres
Publié: (2021) -
Network Intrusion Detection Model Based on Improved BYOL Self-Supervised Learning
par: Zhendong Wang, et autres
Publié: (2021) -
Research on Embroidery Feature Recognition Algorithm of Traditional National Costumes Based on Double-Layer Model
par: Hu Juan
Publié: (2021) -
Sentiment Analysis of Review Text Based on BiGRU-Attention and Hybrid CNN
par: Qiannan Zhu, et autres
Publié: (2021)