Ciprofloxacin stress changes key enzymes and intracellular metabolites of Lactobacillus plantarum DNZ-4

Ciprofloxacin (CIP) is an antibiotic used to treat infections caused by bacteria. In this experiment, key enzymes and intracellular metabolites of Lactobacillus plantarum DNZ-4 was researched under CIP stress. The results showed that the activities of hexokinase, pyruvate kinase, β-galactosidase and...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Pin Chen, Xiaoqian Chen, Wei Yu, Bo Zhou, Lihua Liu, Yuzhuo Yang, Peng Du, Libo Liu, Chun Li
Formato: article
Lenguaje:EN
Publicado: KeAi Communications Co., Ltd. 2022
Materias:
Acceso en línea:https://doaj.org/article/96e156a78ebb48ecab15d5b736f56ccc
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Ciprofloxacin (CIP) is an antibiotic used to treat infections caused by bacteria. In this experiment, key enzymes and intracellular metabolites of Lactobacillus plantarum DNZ-4 was researched under CIP stress. The results showed that the activities of hexokinase, pyruvate kinase, β-galactosidase and Na+, K+-ATPase after 1/2 minimum bacteriostatic concentration (MIC) CIP treatment were significantly decreased (P < 0.01). Gas chromatography-mass spectrometry was used to analysis the changes of main metabolites in the cells and principal component analysis and partial least square model were constructed. The results indicated that CIP could cause changes in intracellular fatty acids, carbohydrates and amino acids, and the mechanism of amino acid metabolism under CIP stress was significantly inhibited. L. plantarum DNZ-4 made stress response to CIP by regulating the ratio of saturated fatty acids and unsaturated fats. This experiment revealed the changes of growth and metabolism mechanism of L. plantarum DNZ-4 under CIP stress, which help to provide technical means for the development of effective probiotics preparation products.