Inverse design of glass structure with deep graph neural networks
The inverse design of the material for given target property is challenging for glasses due to their disordered non-prototypical structure. Wang and Zhang propose a data-driven property oriented inverse approach for design of glassy materials with desired functionalities.
Guardado en:
Autores principales: | Qi Wang, Longfei Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/96e2df770d0e461887ed1838b75044b3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Deep graph neural network-based prediction of acute suicidal ideation in young adults
por: Kyu Sung Choi, et al.
Publicado: (2021) -
Constrained crystals deep convolutional generative adversarial network for the inverse design of crystal structures
por: Teng Long, et al.
Publicado: (2021) -
Prediction of pharmacological activities from chemical structures with graph convolutional neural networks
por: Miyuki Sakai, et al.
Publicado: (2021) -
Author Correction: Deep graph neural network-based prediction of acute suicidal ideation in young adults
por: Kyu Sung Choi, et al.
Publicado: (2021) -
An Overview on the Application of Graph Neural Networks in Wireless Networks
por: Shiwen He, et al.
Publicado: (2021)