On the computational complexity of curing non-stoquastic Hamiltonians
Non-stoquastic Hamiltonians are known to be hard to simulate due to the infamous sign problem. Here, the authors study the computational complexity of transforming such Hamiltonians into stoquastic ones and prove that the task is NP-complete even for the simplest class of transformations.
Guardado en:
Autores principales: | Milad Marvian, Daniel A. Lidar, Itay Hen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/96e743e627034c41bbc3b4c77ded3315 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Hamiltonian simulation with optimal sample complexity
por: Shelby Kimmel, et al.
Publicado: (2017) -
Quantum non-demolition measurement of a many-body Hamiltonian
por: Dayou Yang, et al.
Publicado: (2020) -
Author Correction: Quantum non-demolition measurement of a many-body Hamiltonian
por: Dayou Yang, et al.
Publicado: (2021) -
Hamiltonian path analysis of viral genomes
por: Reidun Twarock, et al.
Publicado: (2018) -
Fast-forwarding of Hamiltonians and exponentially precise measurements
por: Yosi Atia, et al.
Publicado: (2017)