On the computational complexity of curing non-stoquastic Hamiltonians
Non-stoquastic Hamiltonians are known to be hard to simulate due to the infamous sign problem. Here, the authors study the computational complexity of transforming such Hamiltonians into stoquastic ones and prove that the task is NP-complete even for the simplest class of transformations.
Enregistré dans:
Auteurs principaux: | Milad Marvian, Daniel A. Lidar, Itay Hen |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2019
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/96e743e627034c41bbc3b4c77ded3315 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Hamiltonian simulation with optimal sample complexity
par: Shelby Kimmel, et autres
Publié: (2017) -
Quantum non-demolition measurement of a many-body Hamiltonian
par: Dayou Yang, et autres
Publié: (2020) -
Author Correction: Quantum non-demolition measurement of a many-body Hamiltonian
par: Dayou Yang, et autres
Publié: (2021) -
Hamiltonian path analysis of viral genomes
par: Reidun Twarock, et autres
Publié: (2018) -
Fast-forwarding of Hamiltonians and exponentially precise measurements
par: Yosi Atia, et autres
Publié: (2017)