The response of polycyclic aromatic hydrocarbon degradation in coking wastewater treatment after bioaugmentation with biosurfactant-producing bacteria Pseudomonas aeruginosa S5

The polycyclic aromatic hydrocarbons (PAHs) that accumulate during the coking wastewater treatment process are hazardous for the surrounding environment. High molecular weight (HMW) PAHs account for more than 85% of the total PAHs in coking wastewater and sludge, respectively. The degradation of tot...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Tingting Zang, Haizhen Wu, Yuxiu Zhang, Chaohai Wei
Formato: article
Lenguaje:EN
Publicado: IWA Publishing 2021
Materias:
Acceso en línea:https://doaj.org/article/96ea95cfce1a4bf3932f8fa6137ab39d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The polycyclic aromatic hydrocarbons (PAHs) that accumulate during the coking wastewater treatment process are hazardous for the surrounding environment. High molecular weight (HMW) PAHs account for more than 85% of the total PAHs in coking wastewater and sludge, respectively. The degradation of total PAHs increased by 18.97% due to the increased bioavailability of PAHs, after the biosurfactant-producing bacteria Pseudomonas aeruginosa S5 was added. The toxicity of total PAHs to humans was reduced by 26.66% after inoculation with S5. The results suggest biosurfactant-producing bacteria Pseudomonas aeruginosa S5 not only increase the biodegradation of PAHs significantly, but also have a better effect on reducing the human toxicity of PAHs. Kinetic analyses show that PAHs biodegradation fits to first-order kinetics. The degradation rate constant (k) value decreases as the number of PAH rings increases, indicating that HMW PAHs are more difficult to be biodegraded than low molecular weight (LMW) PAHs. The results indicate the bioaugmentation with the biosurfactant-producing strain has significant potential and utility in remediation of PAHs-polluted sites.