Influence of climate on Pelorus Sound mussel aquaculture yields: predictive models and underlying mechanisms
Multiple regression models were used to predict aquaculture production in Pelorus Sound, a 50 km long estuary supporting 68% of New Zealand’s greenshell mussel Perna canaliculus aquaculture industry (worth NZ$204 million per annum). Mussel meat yield was modelled using both biological predictors, in...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Inter-Research
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/96f51ee7417b4945a4c023eacfdbd7ef |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:96f51ee7417b4945a4c023eacfdbd7ef |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:96f51ee7417b4945a4c023eacfdbd7ef2021-11-17T10:04:29ZInfluence of climate on Pelorus Sound mussel aquaculture yields: predictive models and underlying mechanisms1869-215X1869-753410.3354/aei00066https://doaj.org/article/96f51ee7417b4945a4c023eacfdbd7ef2013-06-01T00:00:00Zhttps://www.int-res.com/abstracts/aei/v4/n1/p1-15/https://doaj.org/toc/1869-215Xhttps://doaj.org/toc/1869-7534Multiple regression models were used to predict aquaculture production in Pelorus Sound, a 50 km long estuary supporting 68% of New Zealand’s greenshell mussel Perna canaliculus aquaculture industry (worth NZ$204 million per annum). Mussel meat yield was modelled using both biological predictors, including seston (indexed by particulate nitrogen, PN), phytoplankton and nutrients collected over 9 yr (July 1997 to November 2005) by the mussel industry, and physical, climatic predictors, including Southern Oscillation Index (SOI), along-shelf winds, sea surface temperature (SST) and Pelorus River flow, held in New Zealand national databases. Yield was best predicted using biological predictors collected locally at the farms inside the sound, but it was also predictable using only physical predictors collected distant from the farming region. Seston (mussel food) was also predictable using the physical predictors. Optimal predictor sets for yield and seston differed between summer and winter half-years. In summer, deep water (which enters the sound through the estuarine circulation) at the sound entrance was nitrate (NO3-)-rich during upwelling conditions (negative SOI, NNW wind stress and cool SST). The increased NO3- levels, in turn, triggered increased PN within the sound. In the winter half-year, PN was unrelated to upwelling and NO3- effects at the entrance and was instead related to river flow. Remotely-sensed SST data showed that in summer, upwelling affected the entrance waters of the sound under negative SOI and upwelling-favourable wind stress, patterns which dissipated in winter. Overall, these results show that time series of physical drivers can be useful for explaining production variation of farmed bivalves and indicate the prospects for using data routinely collected in national databases for predicting mussel yield.JR ZeldisMG HadfieldDJ BookerInter-ResearcharticleAquaculture. Fisheries. AnglingSH1-691EcologyQH540-549.5ENAquaculture Environment Interactions, Vol 4, Iss 1, Pp 1-15 (2013) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Aquaculture. Fisheries. Angling SH1-691 Ecology QH540-549.5 |
spellingShingle |
Aquaculture. Fisheries. Angling SH1-691 Ecology QH540-549.5 JR Zeldis MG Hadfield DJ Booker Influence of climate on Pelorus Sound mussel aquaculture yields: predictive models and underlying mechanisms |
description |
Multiple regression models were used to predict aquaculture production in Pelorus Sound, a 50 km long estuary supporting 68% of New Zealand’s greenshell mussel Perna canaliculus aquaculture industry (worth NZ$204 million per annum). Mussel meat yield was modelled using both biological predictors, including seston (indexed by particulate nitrogen, PN), phytoplankton and nutrients collected over 9 yr (July 1997 to November 2005) by the mussel industry, and physical, climatic predictors, including Southern Oscillation Index (SOI), along-shelf winds, sea surface temperature (SST) and Pelorus River flow, held in New Zealand national databases. Yield was best predicted using biological predictors collected locally at the farms inside the sound, but it was also predictable using only physical predictors collected distant from the farming region. Seston (mussel food) was also predictable using the physical predictors. Optimal predictor sets for yield and seston differed between summer and winter half-years. In summer, deep water (which enters the sound through the estuarine circulation) at the sound entrance was nitrate (NO3-)-rich during upwelling conditions (negative SOI, NNW wind stress and cool SST). The increased NO3- levels, in turn, triggered increased PN within the sound. In the winter half-year, PN was unrelated to upwelling and NO3- effects at the entrance and was instead related to river flow. Remotely-sensed SST data showed that in summer, upwelling affected the entrance waters of the sound under negative SOI and upwelling-favourable wind stress, patterns which dissipated in winter. Overall, these results show that time series of physical drivers can be useful for explaining production variation of farmed bivalves and indicate the prospects for using data routinely collected in national databases for predicting mussel yield. |
format |
article |
author |
JR Zeldis MG Hadfield DJ Booker |
author_facet |
JR Zeldis MG Hadfield DJ Booker |
author_sort |
JR Zeldis |
title |
Influence of climate on Pelorus Sound mussel aquaculture yields: predictive models and underlying mechanisms |
title_short |
Influence of climate on Pelorus Sound mussel aquaculture yields: predictive models and underlying mechanisms |
title_full |
Influence of climate on Pelorus Sound mussel aquaculture yields: predictive models and underlying mechanisms |
title_fullStr |
Influence of climate on Pelorus Sound mussel aquaculture yields: predictive models and underlying mechanisms |
title_full_unstemmed |
Influence of climate on Pelorus Sound mussel aquaculture yields: predictive models and underlying mechanisms |
title_sort |
influence of climate on pelorus sound mussel aquaculture yields: predictive models and underlying mechanisms |
publisher |
Inter-Research |
publishDate |
2013 |
url |
https://doaj.org/article/96f51ee7417b4945a4c023eacfdbd7ef |
work_keys_str_mv |
AT jrzeldis influenceofclimateonpelorussoundmusselaquacultureyieldspredictivemodelsandunderlyingmechanisms AT mghadfield influenceofclimateonpelorussoundmusselaquacultureyieldspredictivemodelsandunderlyingmechanisms AT djbooker influenceofclimateonpelorussoundmusselaquacultureyieldspredictivemodelsandunderlyingmechanisms |
_version_ |
1718425626729250816 |