Point2Wave: 3-D Point Cloud to Waveform Translation Using a Conditional Generative Adversarial Network With Dual Discriminators
Since 2017, many deep learning methods for 3-D point clouds observed by airborne LiDAR (airborne 3-D point clouds) have been proposed. Moreover, not only a deep learning method for airborne 3-D point clouds but also a deep learning method for points and their waveforms observed by full-waveform LiDA...
Guardado en:
Autores principales: | Takayuki Shinohara, Haoyi Xiu, Masashi Matsuoka |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/96f93527a30b4b37b508e9bbb88b7271 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
PEMCNet: An Efficient Multi-Scale Point Feature Fusion Network for 3D LiDAR Point Cloud Classification
por: Genping Zhao, et al.
Publicado: (2021) -
Estimating Historically Cleared and Forested Land in Massachusetts, USA, Using Airborne LiDAR and Archival Records
por: Katharine M. Johnson, et al.
Publicado: (2021) -
Mapping tree genera using discrete LiDAR and geometric tree metrics
por: Ko,Connie, et al.
Publicado: (2012) -
Monitoring the Dynamics of Formby Sand Dunes Using Airborne LiDAR DTMs
por: Ahmed Mutasim Abdalla Mahmoud, et al.
Publicado: (2021) -
Paris-CARLA-3D: A Real and Synthetic Outdoor Point Cloud Dataset for Challenging Tasks in 3D Mapping
por: Jean-Emmanuel Deschaud, et al.
Publicado: (2021)