Ensembled deep learning model outperforms human experts in diagnosing biliary atresia from sonographic gallbladder images
It is still challenging to make accurate diagnosis of biliary atresia (BA) with sonographic gallbladder images particularly in rural areas without relevant expertise. Here, the authors develop a diagnostic deep learning model which favourable performance in comparison with human experts in multi-cen...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/97020172e8224071a01e636307ff2f72 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:97020172e8224071a01e636307ff2f72 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:97020172e8224071a01e636307ff2f722021-12-02T13:30:08ZEnsembled deep learning model outperforms human experts in diagnosing biliary atresia from sonographic gallbladder images10.1038/s41467-021-21466-z2041-1723https://doaj.org/article/97020172e8224071a01e636307ff2f722021-02-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-21466-zhttps://doaj.org/toc/2041-1723It is still challenging to make accurate diagnosis of biliary atresia (BA) with sonographic gallbladder images particularly in rural areas without relevant expertise. Here, the authors develop a diagnostic deep learning model which favourable performance in comparison with human experts in multi-center external validation.Wenying ZhouYang YangCheng YuJuxian LiuXingxing DuanZongjie WengDan ChenQianhong LiangQin FangJiaojiao ZhouHao JuZhenhua LuoWeihao GuoXiaoyan MaXiaoyan XieRuixuan WangLuyao ZhouNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-14 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Wenying Zhou Yang Yang Cheng Yu Juxian Liu Xingxing Duan Zongjie Weng Dan Chen Qianhong Liang Qin Fang Jiaojiao Zhou Hao Ju Zhenhua Luo Weihao Guo Xiaoyan Ma Xiaoyan Xie Ruixuan Wang Luyao Zhou Ensembled deep learning model outperforms human experts in diagnosing biliary atresia from sonographic gallbladder images |
description |
It is still challenging to make accurate diagnosis of biliary atresia (BA) with sonographic gallbladder images particularly in rural areas without relevant expertise. Here, the authors develop a diagnostic deep learning model which favourable performance in comparison with human experts in multi-center external validation. |
format |
article |
author |
Wenying Zhou Yang Yang Cheng Yu Juxian Liu Xingxing Duan Zongjie Weng Dan Chen Qianhong Liang Qin Fang Jiaojiao Zhou Hao Ju Zhenhua Luo Weihao Guo Xiaoyan Ma Xiaoyan Xie Ruixuan Wang Luyao Zhou |
author_facet |
Wenying Zhou Yang Yang Cheng Yu Juxian Liu Xingxing Duan Zongjie Weng Dan Chen Qianhong Liang Qin Fang Jiaojiao Zhou Hao Ju Zhenhua Luo Weihao Guo Xiaoyan Ma Xiaoyan Xie Ruixuan Wang Luyao Zhou |
author_sort |
Wenying Zhou |
title |
Ensembled deep learning model outperforms human experts in diagnosing biliary atresia from sonographic gallbladder images |
title_short |
Ensembled deep learning model outperforms human experts in diagnosing biliary atresia from sonographic gallbladder images |
title_full |
Ensembled deep learning model outperforms human experts in diagnosing biliary atresia from sonographic gallbladder images |
title_fullStr |
Ensembled deep learning model outperforms human experts in diagnosing biliary atresia from sonographic gallbladder images |
title_full_unstemmed |
Ensembled deep learning model outperforms human experts in diagnosing biliary atresia from sonographic gallbladder images |
title_sort |
ensembled deep learning model outperforms human experts in diagnosing biliary atresia from sonographic gallbladder images |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/97020172e8224071a01e636307ff2f72 |
work_keys_str_mv |
AT wenyingzhou ensembleddeeplearningmodeloutperformshumanexpertsindiagnosingbiliaryatresiafromsonographicgallbladderimages AT yangyang ensembleddeeplearningmodeloutperformshumanexpertsindiagnosingbiliaryatresiafromsonographicgallbladderimages AT chengyu ensembleddeeplearningmodeloutperformshumanexpertsindiagnosingbiliaryatresiafromsonographicgallbladderimages AT juxianliu ensembleddeeplearningmodeloutperformshumanexpertsindiagnosingbiliaryatresiafromsonographicgallbladderimages AT xingxingduan ensembleddeeplearningmodeloutperformshumanexpertsindiagnosingbiliaryatresiafromsonographicgallbladderimages AT zongjieweng ensembleddeeplearningmodeloutperformshumanexpertsindiagnosingbiliaryatresiafromsonographicgallbladderimages AT danchen ensembleddeeplearningmodeloutperformshumanexpertsindiagnosingbiliaryatresiafromsonographicgallbladderimages AT qianhongliang ensembleddeeplearningmodeloutperformshumanexpertsindiagnosingbiliaryatresiafromsonographicgallbladderimages AT qinfang ensembleddeeplearningmodeloutperformshumanexpertsindiagnosingbiliaryatresiafromsonographicgallbladderimages AT jiaojiaozhou ensembleddeeplearningmodeloutperformshumanexpertsindiagnosingbiliaryatresiafromsonographicgallbladderimages AT haoju ensembleddeeplearningmodeloutperformshumanexpertsindiagnosingbiliaryatresiafromsonographicgallbladderimages AT zhenhualuo ensembleddeeplearningmodeloutperformshumanexpertsindiagnosingbiliaryatresiafromsonographicgallbladderimages AT weihaoguo ensembleddeeplearningmodeloutperformshumanexpertsindiagnosingbiliaryatresiafromsonographicgallbladderimages AT xiaoyanma ensembleddeeplearningmodeloutperformshumanexpertsindiagnosingbiliaryatresiafromsonographicgallbladderimages AT xiaoyanxie ensembleddeeplearningmodeloutperformshumanexpertsindiagnosingbiliaryatresiafromsonographicgallbladderimages AT ruixuanwang ensembleddeeplearningmodeloutperformshumanexpertsindiagnosingbiliaryatresiafromsonographicgallbladderimages AT luyaozhou ensembleddeeplearningmodeloutperformshumanexpertsindiagnosingbiliaryatresiafromsonographicgallbladderimages |
_version_ |
1718392989984751616 |