Ensembled deep learning model outperforms human experts in diagnosing biliary atresia from sonographic gallbladder images
It is still challenging to make accurate diagnosis of biliary atresia (BA) with sonographic gallbladder images particularly in rural areas without relevant expertise. Here, the authors develop a diagnostic deep learning model which favourable performance in comparison with human experts in multi-cen...
Guardado en:
Autores principales: | Wenying Zhou, Yang Yang, Cheng Yu, Juxian Liu, Xingxing Duan, Zongjie Weng, Dan Chen, Qianhong Liang, Qin Fang, Jiaojiao Zhou, Hao Ju, Zhenhua Luo, Weihao Guo, Xiaoyan Ma, Xiaoyan Xie, Ruixuan Wang, Luyao Zhou |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/97020172e8224071a01e636307ff2f72 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Biliary tract and gallbladder cancer diagnosis and therapy /
Publicado: (2009) -
Biliary atresia: the Brazilian experience
por: De Carvalho,Elisa, et al.
Publicado: (2012) -
Biliary Atresia – emerging diagnostic and therapy opportunities
por: Urban Lendahl, et al.
Publicado: (2021) -
Biliary atresia-specific deciduous pulp stem cells feature biliary deficiency
por: Soichiro Sonoda, et al.
Publicado: (2021) -
Rotavirus Infection and Cytopathogenesis in Human Biliary Organoids Potentially Recapitulate Biliary Atresia Development
por: Sunrui Chen, et al.
Publicado: (2020)