Dynamic mode decomposition of inertial particle caustics in Taylor–Green flow
Abstract Inertial particles advected by a background flow can show complex structures. We consider inertial particles in a 2D Taylor–Green (TG) flow and characterize particle dynamics as a function of the particle’s Stokes number using dynamic mode decomposition (DMD) method from particle image velo...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/970846ba7b734453bd1dcee4648245ac |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:970846ba7b734453bd1dcee4648245ac |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:970846ba7b734453bd1dcee4648245ac2021-12-02T15:45:15ZDynamic mode decomposition of inertial particle caustics in Taylor–Green flow10.1038/s41598-021-89953-32045-2322https://doaj.org/article/970846ba7b734453bd1dcee4648245ac2021-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-89953-3https://doaj.org/toc/2045-2322Abstract Inertial particles advected by a background flow can show complex structures. We consider inertial particles in a 2D Taylor–Green (TG) flow and characterize particle dynamics as a function of the particle’s Stokes number using dynamic mode decomposition (DMD) method from particle image velocimetry (PIV) like-data. We observe the formation of caustic structures and analyze them using DMD to (a) determine the Stokes number of the particles, and (b) estimate the particle Stokes number composition. Our analysis in this idealized flow will provide useful insight to analyze inertial particles in more complex or turbulent flows. We propose that the DMD technique can be used to perform similar analysis on an experimental system.Omstavan SamantJaya Kumar AlageshanSarveshwar SharmaAnimesh KuleyNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-9 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Omstavan Samant Jaya Kumar Alageshan Sarveshwar Sharma Animesh Kuley Dynamic mode decomposition of inertial particle caustics in Taylor–Green flow |
description |
Abstract Inertial particles advected by a background flow can show complex structures. We consider inertial particles in a 2D Taylor–Green (TG) flow and characterize particle dynamics as a function of the particle’s Stokes number using dynamic mode decomposition (DMD) method from particle image velocimetry (PIV) like-data. We observe the formation of caustic structures and analyze them using DMD to (a) determine the Stokes number of the particles, and (b) estimate the particle Stokes number composition. Our analysis in this idealized flow will provide useful insight to analyze inertial particles in more complex or turbulent flows. We propose that the DMD technique can be used to perform similar analysis on an experimental system. |
format |
article |
author |
Omstavan Samant Jaya Kumar Alageshan Sarveshwar Sharma Animesh Kuley |
author_facet |
Omstavan Samant Jaya Kumar Alageshan Sarveshwar Sharma Animesh Kuley |
author_sort |
Omstavan Samant |
title |
Dynamic mode decomposition of inertial particle caustics in Taylor–Green flow |
title_short |
Dynamic mode decomposition of inertial particle caustics in Taylor–Green flow |
title_full |
Dynamic mode decomposition of inertial particle caustics in Taylor–Green flow |
title_fullStr |
Dynamic mode decomposition of inertial particle caustics in Taylor–Green flow |
title_full_unstemmed |
Dynamic mode decomposition of inertial particle caustics in Taylor–Green flow |
title_sort |
dynamic mode decomposition of inertial particle caustics in taylor–green flow |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/970846ba7b734453bd1dcee4648245ac |
work_keys_str_mv |
AT omstavansamant dynamicmodedecompositionofinertialparticlecausticsintaylorgreenflow AT jayakumaralageshan dynamicmodedecompositionofinertialparticlecausticsintaylorgreenflow AT sarveshwarsharma dynamicmodedecompositionofinertialparticlecausticsintaylorgreenflow AT animeshkuley dynamicmodedecompositionofinertialparticlecausticsintaylorgreenflow |
_version_ |
1718385765222711296 |