Dynamic mode decomposition of inertial particle caustics in Taylor–Green flow

Abstract Inertial particles advected by a background flow can show complex structures. We consider inertial particles in a 2D Taylor–Green (TG) flow and characterize particle dynamics as a function of the particle’s Stokes number using dynamic mode decomposition (DMD) method from particle image velo...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Omstavan Samant, Jaya Kumar Alageshan, Sarveshwar Sharma, Animesh Kuley
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/970846ba7b734453bd1dcee4648245ac
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:970846ba7b734453bd1dcee4648245ac
record_format dspace
spelling oai:doaj.org-article:970846ba7b734453bd1dcee4648245ac2021-12-02T15:45:15ZDynamic mode decomposition of inertial particle caustics in Taylor–Green flow10.1038/s41598-021-89953-32045-2322https://doaj.org/article/970846ba7b734453bd1dcee4648245ac2021-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-89953-3https://doaj.org/toc/2045-2322Abstract Inertial particles advected by a background flow can show complex structures. We consider inertial particles in a 2D Taylor–Green (TG) flow and characterize particle dynamics as a function of the particle’s Stokes number using dynamic mode decomposition (DMD) method from particle image velocimetry (PIV) like-data. We observe the formation of caustic structures and analyze them using DMD to (a) determine the Stokes number of the particles, and (b) estimate the particle Stokes number composition. Our analysis in this idealized flow will provide useful insight to analyze inertial particles in more complex or turbulent flows. We propose that the DMD technique can be used to perform similar analysis on an experimental system.Omstavan SamantJaya Kumar AlageshanSarveshwar SharmaAnimesh KuleyNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-9 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Omstavan Samant
Jaya Kumar Alageshan
Sarveshwar Sharma
Animesh Kuley
Dynamic mode decomposition of inertial particle caustics in Taylor–Green flow
description Abstract Inertial particles advected by a background flow can show complex structures. We consider inertial particles in a 2D Taylor–Green (TG) flow and characterize particle dynamics as a function of the particle’s Stokes number using dynamic mode decomposition (DMD) method from particle image velocimetry (PIV) like-data. We observe the formation of caustic structures and analyze them using DMD to (a) determine the Stokes number of the particles, and (b) estimate the particle Stokes number composition. Our analysis in this idealized flow will provide useful insight to analyze inertial particles in more complex or turbulent flows. We propose that the DMD technique can be used to perform similar analysis on an experimental system.
format article
author Omstavan Samant
Jaya Kumar Alageshan
Sarveshwar Sharma
Animesh Kuley
author_facet Omstavan Samant
Jaya Kumar Alageshan
Sarveshwar Sharma
Animesh Kuley
author_sort Omstavan Samant
title Dynamic mode decomposition of inertial particle caustics in Taylor–Green flow
title_short Dynamic mode decomposition of inertial particle caustics in Taylor–Green flow
title_full Dynamic mode decomposition of inertial particle caustics in Taylor–Green flow
title_fullStr Dynamic mode decomposition of inertial particle caustics in Taylor–Green flow
title_full_unstemmed Dynamic mode decomposition of inertial particle caustics in Taylor–Green flow
title_sort dynamic mode decomposition of inertial particle caustics in taylor–green flow
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/970846ba7b734453bd1dcee4648245ac
work_keys_str_mv AT omstavansamant dynamicmodedecompositionofinertialparticlecausticsintaylorgreenflow
AT jayakumaralageshan dynamicmodedecompositionofinertialparticlecausticsintaylorgreenflow
AT sarveshwarsharma dynamicmodedecompositionofinertialparticlecausticsintaylorgreenflow
AT animeshkuley dynamicmodedecompositionofinertialparticlecausticsintaylorgreenflow
_version_ 1718385765222711296